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Ehrenfest urn model with interaction
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We studied the Ehrenfest urn model in which particles in the same urn interact with each other. Depending
on the nature of interaction, the system undergoes a first- or second-order phase transition. The relaxation time
to the equilibrium state, the Poincaré cycles of the equilibrium state and the most far-from-equilibrium state,
and the duration time of the states during first-order phase transition are calculated. It was shown that the scaling
behavior the Poincaré cycles could serve as an indication to the nature of phase transition, and the behavior
of the ratio of duration time of the states could be strong evidence of the metastability during first-order phase
transition.
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I. INTRODUCTION

Historically, the Boltzmann’s H theorem based on the
assumption of molecular chaos singles out a direction of time,
which led to two paradoxes [1]. The first one, the so-called
reversal paradox, states that the H theorem is inconsistent
with the time reversal invariance. The Poincaré theorem [2]
requires that the system should return to its initial state (up to
an arbitrarily small neighborhood) after sufficiently long time.
This fact implies reversibility of the dynamical system, leading
to the so-called recurrence paradox. Later, the Ehrenfest urn
model [3] was proposed to resolve the paradoxes and clarify
the relationship between reversible dynamics and irreversible
thermodynamics.

The Ehrenfest model deals with two urns with total
N particles. Each particle is randomly chosen with equal
probability in such a way that it is taken from one urn to another
urn. It is found that the relaxation time for the system to reach
its equilibrium is proportional to N , and the Poincaré cycle of
the most far-from-equilibrium state is proportional to 2N [4].

Since then, the Ehrenfest model was generalized such that
the jumping rates between two urns are unbalanced [5,6], the
system of two urns becomes multiurn [7–9], and multiurns are
connected in a complex network [10]. Fluctuation distribution
of the model was also studied [11–13].

The Ehrenfest model was also applied to understand the
granular system by inducing different effective temperatures
with respect to gravitational field in different urns, which turns
out to exhibit the spatial separation (symmetry-breaking)
phase transition [14–16]. This model was also solved
analytically [17].

By considering the continuum limit of time step in the
evolution of the probability of the state, the linear Fokker-
Planck equation is obtained [4,18]. Modification of the
Ehrenfest model by incorporating the nonlinear contribution
to the Fokker-Planck equation has recently called for attention
[19–21], which is motivated by the processes associated with
anomalous-diffusion phenomena [22–24]. The generalized H

theorem for the nonlinear Fokker-Planck equation was studied
by many authors in recent years [25–28].
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Although many attempts were made to modify the Ehren-
fest model, none of them has been associated with explicit
particle interaction, to our knowledge. The model that we
modified exhibits the (first- and second-order) phase transition
depending on the nature of interaction. We also calculate the
relaxation time to the equilibrium state, the Poincaré cycles of
both the equilibrium and the most far-from-equilibrium states,
and the duration time of the states during the first-order phase
transition. Finally, we point out that the scaling behavior of the
Poincaré cycle could be served as an indication of the nature of
the phase transition, and the behavior of the ratio of duration
time of the states could be a strong evidence of the metastability
during first-order phase transition.

II. EHRENFEST MODEL WITH INTERACTION

We present our model as follows. There are N particles
distributed into two urns. The number of particle in the left
and right urns are n and N − n, respectively. Since the total
particle number N is fixed, we label the state of the system by
its particle number in the left urn, denoted by |n〉.

Unlike the original Ehrenfest model, we introduce particle
interaction in the same urn. Two particles of different urns
do not interact. The total energy E = J

2 (n(n − 1) + [N −
n)(N − n − 1)] with energy coupling J . The interaction is
attractive (repulsive) if J is negative (positive). When a particle
jumps from the left to the right urn, �E = −J (2n − N − 1).
To satisfy the principle of detailed balance, we should have
the restriction on the transition probability such that

Tn,n−1

Tn−1,n

= eβ�E = e− g

N
(2n−N−1), (1)

where Tn±1,n is the transition probability from the state |n〉
to |n ± 1〉, β is the inverse of effective temperature, and we
introduce the coupling constant g ≡ NJβ such that �E is
extensive (proportional to N given fixed g). There is a degree
of freedom to choose the transition probability; however, we
adopt

Tn−1,n = 1

e− g

N
(2n−N−1) + 1

, (2)

Tn,n−1 = 1

e
g

N
(2n−N−1) + 1

. (3)
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FIG. 1. Schematic diagram to illustrate the transition in our model.

Note that Tn−1,n = Tn,n−1 = 1
2 if the interaction is turned off.

Different proportionality implies a different time scale chosen.
Besides the particle interaction, we further introduce the
jumping rate from one urn to another urn, which is independent
of the particle interaction. Suppose the probability of jumping
rate from the left (right) to the right (left) urn is p(q). For
convenience, we restrict p + q = 1. Again this restriction
changes only the time scale.

After s steps from the initial state |n0〉, the probability
of the state |n〉 is denoted by 〈n|p(s)|n0〉, where p(s) is the
corresponding operator. As illustrated in Fig. 1, one has the
recurrence relation from the (s − 1)-th to sth step such that

〈n|p(s)|n0〉 = Wn,n−1〈n − 1|p(s − 1)|n0〉 + Wn,n+1〈n
+ 1|p(s − 1)|n0〉 + Wn,n〈n|p(s − 1)|n0〉,

(4)

where Wn−1,n = n
N

pTn−1,n,Wn,n−1 = N−n+1
N

qTn,n−1, and
Wn,n = 1 − Wn−1,n − Wn+1,n.

It is convenient to rewrite the recurrence relation in a matrix
form. Let the state vector

ψ(s) =

⎛
⎜⎜⎝

〈0|p(s)|n0〉
〈1|p(s)|n0〉

...
〈N |p(s)|n0〉

⎞
⎟⎟⎠. (5)

The normalization condition (probability conservation) of
the state vector is

∑N
n=0 ψn(s) = ∑N

n=0〈n|p(s)|n0〉= 1 for
any s. Define the matrix Mnm = 〈n|p(1)|m〉 so that
ψ(s) = Mψ(s − 1). In general, ψ(s) = Msψ(0). Based on the
normalization condition of the state vectors, the matrix M

should satisfy

N∑
n=0

(Ms)nm = 1 (6)

for m = 0,1, . . . ,N and s � 1. Ms can be evaluated if the
eigenvalues λm and eigenvectors φ(m) = (φ0(m),φ1(m), . . . ,
φN (m))t of M are known, and so

Ms = A�sA−1, (7)

where A and � are matrices of dimension (N + 1) × (N + 1).
Their components are Anm = φn(m) and �nm = λmδnm.

The eigensystem becomes

N − n + 1

N

q

e
g

N
(2n−N−1) + 1

φn−1

+ n + 1

N

p

e− g

N
(2n−N+1) + 1

φn+1

+
(

1 − n

N

p

e− g

N
(2n−N−1) + 1

− N − n

N

q

e
g

N
(2n−N+1) + 1

)
φn

= λφn. (8)

The indices m to λ and φn are omitted without causing any
confusion. We found no exact solution to the eigenproblem
except for some special cases, e.g., the cases in which g = 0
and g → −∞ (see Appendix A and B for details). If λN = 1
(we label its index N ),

φn(N ) = N !

n!(N − n)!
pN−nqne

g

N
n(N−n) (9)

in which the eigenstate could be verified by direct substitution
into Eq. (8).

III. MEAN PARTICLE NUMBER

The mean particle number after s steps is

〈n〉s =
N∑

n=0

nψn(s)

=
N∑

n=0

n(Msψ(0))n

=
N∑

n=0

N∑
m,k=0

nAnmλs
mA−1

mkψk(0). (10)

Suppose there is an unique state of unity eigenvalue, say, λN =
1, and all the remaining eigenvalues are less than unity, as
s → ∞, the mean value 〈n〉 is defined as

〈n〉 ≡ 〈n〉∞ =
N∑

n=0

N∑
k=0

nAnNA−1
Nkψk(0). (11)

By taking the limit s → ∞ in Eq. (6), we get∑N
n=0 AnNA−1

Nm = 1 for any m. Hence

A−1
Nm = 1∑N

n=0 AnN

= 1∑N
n=0 φn(N )

, (12)

which is independent of m. Substitute Eq. (12) into Eq. (11),

〈n〉 =
N∑

n=0

nφn(N )
1∑N

n=0 φn(N )

N∑
k=0

ψk(0)

=
∑N

n=0 nφn(N )∑N
n=0 φn(N )

. (13)

In general, there is no closed form for Eq. (13) if N is
finite. If N is large enough, we could derive the asymptotic
result. Notice that, by using the Stirling formula [29], one
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FIG. 2. The relation between the saddle point ysp in Eq. (17)
and the coupling constant g. 1

N
(nsp − N

2 ) as a function of coupling
constant g for different p. As g � gsp, two saddle points arise where
nsp,− < nsp,+. Inset: gsp as a function of p − 1

2 .

can rewrite Eq. (9) as φn(N ) = exp{Nf ( n
N

) − 1
2 log[2π n

N
(1 −

n
N

)N ] + O(N−1)}. Then the denominator in Eq. (13):

N∑
n=0

φn(N ) =
(

N

2π

) 1
2
∫ 1

0
dx

eNf (x)

√
x(1 − x)

, (14)

where x = n
N

, the proportion of particle number in the left urn,
and

f (x) = −x ln x − (1 − x) ln(1 − x)

+ (1 − x) ln p + x ln q + gx(1 − x). (15)

As N is large enough, the integral is asymptotically

(
N

2π

) 1
2 ∑

{xsp}

eNf (xsp)√
xsp(1 − xsp)

∫ 1

0
dxe

N
2 f ′′(xsp)(x−xsp)2

=
∑
{xsp}

eNf (xsp)√
xsp(1 − xsp)|f ′′(xsp)| 1

2

, (16)

where {xsp} is the set of the saddle points satisfying f ′(xsp) =
0 and f ′′(xsp) < 0. xsp represents the proportion of particle
number in the left urn at equilibrium state or metastable state.
The condition that f ′(xsp) = 0 is expressed as

2ysp = − tanh

[
gysp + 1

2
ln

(
p

q

)]
, (17)

where ysp ≡ xsp − 1
2 ≡ 1

N
(nsp − N

2 ). If g is large enough, say,
g > gsp, there is only one saddle point xsp. When g < gsp,
two saddle points appear, namely, xsp,− < xsp,+. f (xsp,+) >

f (xsp,−) as p < 1
2 and vice versa. The plot of the saddle points

as a function of g for different p is shown in Fig. 2, and gsp as
a function of p is plotted in the inset.

The numerator in Eq. (13) in large N limit can be evaluated
by a similar way. In large N limit, 〈n〉 = nsp if g > gsp. When
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FIG. 3. The relation between the saddle point ysp in Eq. (17) and
p. 1

N
(nsp − N

2 ) as a function of p − 1
2 for different g.

g < gsp, we have

〈n〉 =
⎧⎨
⎩

nsp,+ if p < 1
2

N
2 if p = 1

2
nsp,− if p > 1

2

. (18)

When p = 1
2 , the system undergoes a second-order phase

transition by varying the coupling constant g. The order
parameter, 〈n〉, changes continuously across the transition. The
critical point gc can be determined by solving f ′′(xsp)|g→g+

c
=

0, which gives gc = −2.
If g < gc, there is a first-order phase transition as p

varies. The critical point pc is given by f (xsp,+)|p→p−
c

=
f (xsp,−)|p→p+

c
, which gives pc = 1

2 . As seen from Eq. (18)
and Fig. 3, the order parameter, 〈n〉, changes discontinuously
at p = pc. The saddle point at xsp,−(xsp,+) when p < pc(p >

pc) represents the metastable state. Due to the existence
of the metastable state, the system shows hysteresis. In
Sec. VI, we provide another means to indicate the existence of
metastability.

IV. RELAXATION TO EQUILIBRIUM

When the system is not at its equilibrium, it will relax.
It is interesting to know how the relaxation time behaves.
Expanding Eq. (10) with the help of Eq. (11) gives

〈n〉s = 〈n〉 + λs
N−1

N∑
n,k=0

nAn,N−1A
−1
N−1,kψk(0)

+ λs
N−2

N∑
n,k=0

nAn,N−2A
−1
N−2,kψk(0)

+ · · · + λs
0

N∑
n,k=0

nAn0A
−1
0k ψk(0), (19)

where the eigenvalues are arranged in ascending order, λ0 <

λ1 < · · · < λN−1 < λN = 1. If s is large enough, the last
contribution term before reaching the equilibrium is the λN−1
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term, which also defines the relaxation time

τR ≡ − 1

ln(λN−1)
. (20)

If g = 0, for large N, τR = 2N . If g 	= 0, the eigenvalues can be found by perturbation (see Appendix D for details).
For g > gsp, let M0 be the transition matrix at g = 0. The perturbed transition matrix M1 = M − M0, and then apply Eq. (D4),

after some algebra, we have the first-order perturbation correction to the mth eigenvalue:

λ(1)
m = − 1

2N

N∑
n=1

A−1
mn[q(N − n + 1)An−1,m + pnAnm] tanh

[ g

2N
(2n − N − 1)

]

+ 1

2N

N−1∑
n=0

A−1
mn[q(N − n)Anm + p(n + 1)An+1,m] tanh

[ g

2N
(2n − N + 1)

]

= 1

2N

N
2 −1∑
k=0

tanh
[ g

2N
(2k + 1)

]{[
A−1

m, N
2 −k

− A−1
m, N

2 −k−1

][
q

(
N

2
+ k + 1

)
AN

2 −k−1,m + p

(
N

2
− k

)
AN

2 −k,m

]

+
[
A−1

m, N
2 +k

− A−1
m, N

2 +k+1

][
q

(
N

2
− k

)
AN

2 +k,m + p

(
N

2
+ k + 1

)
AN

2 +k+1,m

]}
. (21)

For m = N , notice that A−1
Nn = 1 by using Eqs. (A5) and (A10), we get λ(1)

N = 0. It is consistent with the fact that the eigenvalue
λN = 1 for the equilibrium state should be unchanged under perturbation.

The next largest eigenvalue is responsible for the relaxation time to the equilibrium. For m = N − 1 in Eq. (21), and notice
that A−1

N−1,n = qN − n and An,N−1 = φn(N )(qN − n)/(Npq), which can be obtained from Eqs. (A5) and (A10), after some
algebra, we have

λ
(1)
N−1 = − 1

2qN2

N
2 −1∑
k=0

N !(
N
2 + k

)
!
(

N
2 − k

)
!
p

N
2 +kq

N
2 −k

(
N

2
− k

)
[2k + 1 + (2q − 1)N ] tanh

[ g

2N
(2k + 1)

]

− 1

2pN2

N
2 −1∑
k=0

N !(
N
2 + k

)
!
(

N
2 − k

)
!
q

N
2 +kp

N
2 −k

(
N

2
− k

)
[2k + 1 + (2p − 1)N ] tanh

[ g

2N
(2k + 1)

]


 − 1

q

√
N

2πpq

∫ q

− 1
2 (p−q)

dxe− N
2pq

x2

x(q − x) tanh

{
g

[
x + 1

2
(p − q)

]}

− 1

p

√
N

2πpq

∫ p

− 1
2 (q−p)

dxe− N
2pq

x2

x(p − x) tanh

{
g

[
x + 1

2
(q − p)

]}

= −gpq

N
sech2

[g
2

(q − p)
]

+ O(N−2), (22)

where we only keep the leading order for large N in the
asymptotic expansion. From the definition of the relaxation
time in Eq. (20),

τR = 2N

1 + 2gpqsech2[ g

2 (q − p)]
. (23)

In particular, when p = 1
2 ,

τR = 2N

1 + g

2

. (24)

Notice that τR → 0 as g → +∞. The more repul-
sive interaction, the shorter relaxation time to the
equilibrium.

By keeping only the first two terms in Eq. (19), and using
the definition of τR from Eq. (20), we have

〈n〉s = 〈n〉 + (n0 − 〈n〉)e−s/τR (25)

as s is large enough. n0 is the initial value. The above formula
is compared with the numerical result, as shown in Fig. 4.
Good agreement at large s is found.

For g < gsp, let M0 be the transition matrix at g →
−∞. Without loss of generality, suppose p � 1

2 , then the
equilibrium eigenstate is labeled by m = N , of eigenvalue
λ

(0)
N = 1. The eigenstate of the next largest eigenvalue is

labeled by m = N − 1, of eigenvalue λ
(0)
N−1 = 1 − p

N
.

By Eq. (D4), and notice that the nonvanishing AnN = 1 for
n = N,An,N−1 = (−1)n for n � N − 1 from Eq. (B5), we get
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FIG. 4. The proportion of particle number in the left urn, 〈n〉s/N ,
as a function of time step s for g > gsp at different p and g. The initial
value n0 is chosen to be the most far-from-equilibrium state. Solid
lines represent the corresponding result by Eq. (25).

λ
(1)
N = (M1)NN + (M1)N−1,N = 0, which is again consistent

with λN = 1 unchanged under perturbation.
The first-order perturbation correction to the next largest

eigenvalue is

λ
(1)
N−1 = −(M1)N−1,N + (M1)N−1,N−1 + 2(M1)N−2,N−1

= −qN − p

N

1

e|g|(1− 1
N

) + 1
+ q(N − 1)

N

1

e|g|(1− 3
N

) + 1

= 1

N

[ |g|q
2

sech2

( |g|
2

)
+ p − q

e|g| + 1

]
+ O(N−2) (26)

if only the leading order for large N is kept. The relaxation
time is then

τR = N

p − |g|q
2 sech2

( |g|
2

)− p−q

e|g|+1

, (27)

and g is largely negative if p deviates from 1
2 a lot, as shown

in the inset of Fig. 2. In this case, τR 
 N
p

, which is the limit
as g → −∞.

Similarly, if p > 1
2 , the relaxation time is

τR = N

q − |g|p
2 sech2

( |g|
2

)− q−p

e|g|+1

, (28)

and τR 
 N
q

when p deviates from 1
2 a lot.

With the help of the relaxation time, we have

〈|n − n0|〉s + n0 = 〈n〉 + (n0 − 〈n〉)e−s/τR (29)

as s is large enough; n0 is the initial value. Here we use 〈|n −
n0|〉s + n0 instead of 〈n〉s in order to avoid the interference
from the metastable state. The above formula is compared with
the numerical result, as shown in Fig. 5. Again both analytical
and numerical results match well at large s.

V. POINCARÉ CYCLE

In this section, we are going to discuss the scaling behavior
of the Poincaré cycle with respect to the particle number N and
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 / 
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FIG. 5. The proportion of particle number in the left urn, (〈|n −
n0|〉s + n0)/N , as a function of time step s for g < gsp at different
p and g. The initial value n0 is chosen to be the most far-from-
equilibrium state. Solid lines represent the corresponding result by
Eq. (29).

the tuning parameters (g or p) across the (first- and second-
order) phase transition.

The Poincaré cycle of the state |n〉, denoted by τP(n), is
defined as the mean time from the state |n〉 to its original state
at its first time, τ (n → n), which is (see Appendix C for the
proof)

τP(n) =
∑N

k=0 φk(N )

φn(N )
. (30)

If p = 1
2 , by Eqs. (9) and (16), and notice that f ′′(xsp) =

−2(g − gc) with gc = −2, it is straightforward to have the
Poincaré cycle of the equilibrium

τ
eq
P = τP(nsp) = √

π (g − gc)−
1
2 N

1
2 . (31)

If g < gc, two saddle points nsp,± emerge. When g �
gc, nsp,+ � N

2 and nsp,− � N
2 . f (xsp,+) = f (xsp,−). One can

solve for xsp,± 
 1
2 ±

√
3
8 (gc − g)

1
2 . Notice that f ′′(xsp,±) =

−4(gc − g), the Poincaré cycle of the equilibrium

τ
eq
P =

√
2π (gc − g)−

1
2 N

1
2 . (32)

When g � gc, nsp,+ � N and nsp,− � 0, then xsp,+ 
 1 − eg ,
and xsp,− 
 eg . When f ′′(xsp,±) 
 −e−g , then

τ
eq
P = 2

√
2πe− |g|

2 N
1
2 . (33)

The Poincaré cycle of the equilibrium state τ
eq
P always has√

N dependence. It becomes divergent at the transition point
g = gc. From Eq. (16), it is seen that the divergence comes
from the vanishing |f ′′(xsp)|g→gc

in the denominator, which
implies that it is universal in second-order phase transition.
However, note that Eq. (16) is obtained in the large N limit.
For large but finite N , one should see the divergent-like scaling
behavior instead of real divergence.

Next we investigate the scaling behavior of the Poincaré
cycle of the most far-from-equilibrium state τ

feq
P , in which it

is defined as the longest Poincaré cycle.
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When p = 1
2 , and g > gc, then nsp = N

2 , the most far-from-
equilibrium state is at n = N (or n = 0), then

τ
feq
P = τP(N ) =

√
2(g − gc)−

1
2 exp

[
N
(

ln 2 + g

4

)]
. (34)

If g � gc,

τ
feq
P = τP(N ) = 2(gc − g)−

1
2 exp

[
N
(

ln 2 + g

4

)]
. (35)

If g � gc,

τ
feq
P = τP

(
N

2

)
=

√
2πN

1
2 exp

[
N

( |g|
4

− ln 2

)]
. (36)

The Poincaré cycle of the most far-from-equilibrium τ
feq
P

has the exponential form eαN . It also becomes “divergent” (see
the argument above) at g = gc, but the scaling exponent α is
finite and continuous across the transition point.

In the following, we are going to investigate the behavior
of the Poincaré cycle across the first-order phase transition.
Suppose g � gsp, there are two saddle points. When p <

pc = 1
2 , xsp,+ 
 1 − (1 + ln p

q
)eg and xsp,− 
 (1 − ln p

q
)eg ,

the Poincaré cycle of the equilibrium state

τ
eq
P = τP(nsp,+) =

√
2πe− |g|

2 N
1
2

[
1 + ln

(
p

q

)] 1
2

. (37)

When p > pc, xsp,+ 
 1 − (1+ ln q

p
)eg, xsp,− 
 (1− ln q

p
)eg ,

then

τ
eq
P = τP(nsp,−) =

√
2πe− |g|

2 N
1
2

[
1 + ln

(
q

p

)] 1
2

. (38)

It is interesting to notice that τ
eq
P 
 √

2π |g|− 1
2 N

1
2 if p 	=

pc. At the transition point p = pc, τ
eq
P = 2

√
2π |g|− 1

2 N
1
2 . The

Poincaré cycle of the equilibrium state is finite and continuous
during first-order transition.

The most far-from-equilibrium state is at n = N ( 1
2 −

ln(p

q
)eg), then

τ
feq
P =

√
π

2
N

1
2 exp

[
N

( |g|
4

− ln 2

)]

×
[(

p

q

) N
2

+
(

q

p

) N
2

]
. (39)

When p is around the transition point pc, in large N limit,
τ

feq
P = √π

2 N
1
2 exp[N ( |g|

4 − ln 2)]. At exactly p = pc, τ
feq
P is

double its value.
The Poincaré cycle of the most far-from-equilibrium has

still the exponential form eαN dependence, with a continuous
exponent α across the first-order phase transition.

In summary, the Poincaré cycles τ
eq
P and τ

feq
P have the√

N and eαN dependence, respectively. During second-order
phase transition, both τ

eq
P and τ

feq
P behave divergent-like

at the transition point. At first-order phase transition, the
Poincaré cycles are finite and continuous. Such behavior of
the Poincaré cycle could serve as an indication of the nature
of the phase transition.

VI. DURATION TIME

When g � gsp, the system will stay at the states |0〉 and |N〉.
Suppose the system transits from |N〉 to |0〉, it should meet |N

2 〉
during the evolution because n changes continuously. (Here the
continuity of n means n changes its value at most ±1 at each
step.)

Define τD(n,1) as the mean time for the system to evolve
from |N

2 〉 to |n〉 at its first time, and then back |N
2 〉 at its first

time. When n = N ,

τD(N,1) ≡
∞∑

s1=1

∞∑
s2=1

(s1 + s2)

(
N

2
|p(s2)|N

)(
N |p(s1)|N

2

)
,

(40)

where the notation (m|p(s)|n) represents the probability that
the state |m〉 becomes |n〉 at its first time after s steps. With
the help of Eqs. (C6)–(C8), Eq. (40) becomes

τD(N,1) = τ

(
N

2
→ N

)
gN

2 ,N (1) + τ

(
N → N

2

)
gN, N

2
(1)

= τP(N ) + τP

(
N

2

)
. (41)

Since τP(N
2 ) � τP(N ) for g � gsp, τD(N,1) = τP(N

2 ). By a
similar argument, τD(0,1) = τP(N

2 ).
The above transition(|N

2 〉 → |n〉 → |N
2 〉) may occur k times

consecutively. Define τD(n,k) as its mean time, then

τD(n,k) ≡
∞∑

s1,...,s2k=1

(s1 + s2 + · · · + s2k)

×
(

N

2
|p(s2k|n)(n|p(s2k−1)|N

2

)
· · ·

×
(

N

2
|p(s2)|n)(n|p(s1)|N

2

)

= k

∞∑
s=1

s

(
n|p(s)|N

2

)
+ k

∞∑
s=1

s

(
N

2
|p(s)|n

)

= k

[
τP(n) + τP

(
N

2

)]
. (42)

Hence τD(N,k) = τD(0,k) = kτP(N
2 ).

The duration time at state |N〉, τD(N ), defined as the total
time at which the system stays at |N〉 before transits to |0〉,

τD(N ) ≡
∞∑

k=1

[
τP(N )−1

τP(N )−1 + τP(0)−1

]k

τD(N,k)

=
[
τP(N ) + τP

(
N

2

)] ∞∑
k=1

k

(
pN

pN + qN

)k

=
(

q

p

)N
[(

q

p

)N

+ 1

][
τP(N ) + τP

(
N

2

)]
.

(43)
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The asymptotic form at large N limit becomes

τD(N ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
q

p

)2N

τP
(

N
2

)
if p < 1

2

2τP
(

N
2

)
if p = 1

2(
q

p

)N

τP
(

N
2

)
if p > 1

2

. (44)

Similarly, the duration time at state |0〉 is

τD(0) =
(

p

q

)N
[(

p

q

)N

+ 1

][
τP(0) + τP

(
N

2

)]
,

(45)
and its asymptotic form

τD(0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
p

q

)N

τP
(

N
2

)
if p < 1

2

2τP
(

N
2

)
if p = 1

2(
p

q

)2N

τP
(

N
2

)
if p > 1

2

. (46)

There is a first-order phase transition as p varies. As p <

pc, τD(N ) > τD(0) > 0. It means the state |N〉 is preferable but
|0〉 still survives. Upon increasing p, the ratio of the duration
time of two states, τD(N )/τD(0), decreases. At p = pc,
τD(N ) = τD(0). Further increasing p > pc, τD(0) > τD(N ) >

0. Such behavior indicates a strong evidence of metastability
during first-order phase transition.

VII. DISCUSSION

The order-of-magnitude determination of the Poincaré
cycle of the most far-from-equilibrium state was originally
used to resolve the recurrence paradox. In the macroscopic
world, it is far beyond the time scale we can observe. If N is
not large enough, in principle, the measurement of the Poincaré
cycle should be experimentally accessible. For example, in a
colloidal system, one can easily prepare the system of small
particle number N . The interaction between the colloidal
particles (g in our model) is also well controlled [30]. The
probability of directed transport (p in our model) can be tuned
by applying the electric field along the direction from the left
to the right urn, and the particles are slightly charged.
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APPENDIX A: EIGENPROBLEM FOR g = 0

The standard way to solve the eigenproblem is the method
of generating functions [31]. For g = 0, it was already known
[5,6,32]. In the following, we briefly outline the solution.

For g = 0, Eq. (8) is reduced to

N − n + 1

2N
qφn−1 + n + 1

2N
pφn+1

+
(

1 − n

2N
p − N − n

2N
q

)
φn = λφn. (A1)

Let f (z) ≡∑N
n=0 φnz

n =∑∞
n=−∞ φnz

n, if we extend φn ≡ 0
for n < 0 and n > N , then

1

N

df

dz
(p + qz)(1 − z) = [2λ − 1 − (p + qz)]f. (A2)

The solution is

f (z) = (p + qz)N(2λ−1)(1 − z)2N(1−λ) (A3)

up to an arbitrary proportional constant. Since f (z) is a
polynomial in z by definition, N (2λ − 1) and 2N (1 − λ) have
to be non-negative integers. Hence we get

λm = 1

2
+ m

2N
, (A4)

where m = 0,1,2, . . . ,N are the numbers to label the eigenval-
ues. The corresponding eigenvectors of the component φn(m)
could be obtained by comparing the zn coefficient of f (z) in
Eq. (A3) with its definition, we have

φn(m) =
∑

k+l=n

(
m

k

)(
N − m

l

)
(−1)lpm−kqk.

(A5)

In particular, for λN = 1, its corresponding eigenvector

φn(N ) = N !

n!(N − n)!
pN−nqn. (A6)

Now Anm = φn(m), its inverse A−1
nm is defined as∑

n

AlnA
−1
nm = δlm. (A7)

Multiplying zl , summing over l, and making use of Eq.(A3)–
(A4), we get∑

n

(p + qz)n(1 − z)N−nA−1
nm = zm. (A8)

By change of variable t = −p+qz

1−z
, we have

∑
n

A−1
nm(−1)m+ntn = qN−mfm

(
t

q

)
, (A9)

which gives

A−1
nm = (−1)m+nqN−m−nφn(m). (A10)

APPENDIX B: EIGENPROBLEM FOR g → −∞
As g → −∞, Eq. (8) is reduced to

N − n + 1

N
q�

(
n − N + 1

2

)
φn−1

+n + 1

N
p�

(
N − 1

2
− n

)
φn+1

+
[

1 − n

N
p�

(
N + 1

2
− n

)

−N − n

N
q�

(
n − N − 1

2

)]
φn = λφn, (B1)
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where �(x) is the step function. When n = N
2 , it becomes

1
2φN

2
= λφN

2
. Hence λN

2
= 1

2 , and the corresponding eigenvec-

tor is φ(N
2 ) = (0, . . . ,1, . . . ,0)T with the only nonvanishing

component φN
2

(N
2 ) = 1. (Here we label this eigenstate by N

2 ).
The matrix M is in block diagonal form. We first search
for the eigenstates such that φn = 0 for n � N

2 , and further

assume that φn ≡ 0 for n < 0. Let f (z) ≡∑N
n=0 φnz

n =∑∞
n=−∞ φnz

n, then

p

N

df

dz
(1 − z) = (λ − 1)f. (B2)

The solution is

f (z) = (1 − z)N(1−λ)/p (B3)

up to an arbitrary proportional constant. Since f (z) is a
polynomial of degree N

2 − 1 in z by definition, N (1 − λ)/p
have to be non-negative integers less than or equal to N

2 − 1.
Hence we get

λm = 1 − p
N − m

N
, (B4)

where m = N
2 + 1, . . . ,N − 1,N are the numbers to label the

eigenvalues. The nonvanishing components of the correspond-
ing eigenvectors are

φn(m) = (−1)n
(

N − m

N − n

)
, (B5)

which are the zN−n coefficient of fm(z) = (1 − z)N−m with
N
2 + 1 � m � n � N .

By making the transformation from n to N − n and p to
1 − p in Eq. (B1), we get another set of eigenstates such that

φn(m) = φN−n(N − m), (B6)

where m = 0,1, . . . ,N
2 − 1. With the help of Eqs. (B4)–(B5),

the nonvanishing components of the eigenvectors are

φn(m) = (−1)n
(

m

n

)
, (B7)

where 0 � n � m � N
2 − 1, fm(z) = (1 − z)m, and the corre-

sponding eigenvalues are

λm = 1 − q
m

N
. (B8)

Now the matrix Anm = φn(m) is block diagonal with three
blocks, {Anm}0�n,m� N

2 −1, AN
2 , N

2
, and {Anm} N

2 +1�n,m�N . We

first restrict the upper block, its inverse A−1
nm is defined as

N
2 −1∑
n=0

AlnA
−1
nm = δlm. (B9)

Similar to the treatment for the case that g = 0, multiply zl ,
sum over l, make use of Eqs. (B7)–(B8), and then make the
change of variable t = 1 − z, we arrive at

N
2 −1∑
n=0

A−1
nmtn = fm(t), (B10)

which gives

A−1
nm = φn(m), (B11)

where 0 � n,m � N
2 − 1. Equation (B11) also holds for 0 �

n,m � N . By the symmetry argument as above, the transfor-
mation n → N − n, p → 1 − p leaves Eq. (B1) unchanged,
and Eq. (B11) should hold for N

2 + 1 � n,m � N . It is also
straightforward to check A−1

N
2 , N

2
= AN

2 , N
2

= φN
2

(N
2 ) = 1, which

is Eq. (B11) with n = m = N
2 .

APPENDIX C: MEAN TIME FROM STATE TO STATE

Denote (n|p(s)|m) as the probability that the state |m〉
becomes the state |n〉 at its first time after s steps. Its relation
with the probability 〈n|p(s)|m〉 is

〈n|p(s)|m〉 = (n|p(s)|m) +
s−1∑
k=1

〈n|p(s − k)|n〉(n|p(k)|m).

(C1)

Define two generating functions,

hmn(z) ≡
∞∑

s=1

〈n|p(s)|m〉zs

=
∞∑

s=1

(Ms)nmzs

=
∞∑

s=1

N∑
k=0

Ankλ
s
kA

−1
kmzs

=
N∑

k=0

AnkA
−1
km

λkz

1 − λkz
(C2)

and

gnm(z) ≡
∞∑

s=1

(n|p(s)|m)zs. (C3)

We can deduce the relation between these two generating
functions from Eq. (C1):

hmn(z) = gnm(z) + hnn(z)gnm(z) (C4)

or equivalently,

gmn(z) = hnm(z)

hnn(z) + 1
. (C5)

The probability normalization

∞∑
s=1

(n|p(s)|m) = gnm(1) = lim
z→1−

hnm(z)

hnn(z) + 1

= AnNA−1
Nm

AnNA−1
Nn

= 1. (C6)

Here we use the fact that A−1
Nk is independent of k, and we label

λN = 1.
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The mean time from the state |m〉 to the state |n〉 at its first
time is defined as

τ (m → n) ≡
∞∑

s=1

s(n|p(s)|m) = dgnm

dz

∣∣∣∣
z=1

= AnNA−1
Nm(

AnNA−1
Nn

)2 =
∑N

k=0 φk(N )

φn(N )
. (C7)

Note that the mean time is independent of the initial state |m〉.
The Poincaré cycle τP(n), defined as τ (n → n), also shares the
same result,

τP(n) =
∑N

k=0 φk(N )

φn(N )
. (C8)

APPENDIX D: PERTURBATION THEORY

We want to solve the eigenproblem

Mφ(m) = λmφ(m). (D1)

Suppose the eigenproblems M0φ
(0)(m) = λ(0)

m φ(0)(m) are
solved. Let the matrix Anm = φ(0)

n (m), ψ (0)(m) = A−1φ(0)(m),
then

�0ψ
(0)(m) = λ(0)

m ψ (0)(m), (D2)

where (�0)nm = λ(0)
m δnm and ψ (0)

n (m) = δnm. It is obvious to
see the orthnormality relation ψ (0)T (n)ψ (0)(m) = δnm.

Write M = M0 + M1 and φ(m) = φ(0)(m) + φ(1)(m).
Keeping Eq. (D1) up to the first order, we have

(
�1 − λ(1)

m

)
ψ (0)(m) = (λ(0)

m − �0
)
ψ (1)(m), (D3)

where �1 = A−1M1A and ψ (1)(m) = A−1φ(1)(m). Multiply-
ing both sides of Eq. (D3) by ψ (0)T (m), then we get the first
order correction of the eigenvalue

λ(1)
m = (�1)mm = (A−1M1A)mm. (D4)
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