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Coexistence of distinct nonuniform nonequilibrium steady
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The recently proposed Ehrenfest M-urn model with interactions on a ring is considered as a paradigm model
which can exhibit a variety of distinct nonequilibrium steady states. Unlike the previous three-urn model on a
ring which consists of a uniform steady state and a nonuniform nonequilibrium steady state, it is found that
for even M � 4, an additional nonequilibrium steady state can coexist with the original ones. Detailed analysis
reveals that this additional nonequilibrium steady state emerged via a pitchfork bifurcation which cannot occur
if M is odd. Properties of this nonequilibrium steady state, such as stability, and steady-state flux are derived
analytically for the four-urn case. The full phase diagram with the phase boundaries is also derived explicitly.
The associated thermodynamic stability is also analyzed, confirming its stability. These theoretical results are
also explicitly verified by direct Monte Carlo simulations for the three-urn and four-urn ring models.
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I. INTRODUCTION

Starting from the second law of thermodynamics, nonequi-
librium processes have been under active study for about 200
years due to their fundamental importance in classical ther-
modynamics and statistical mechanics [1]. In contrast to the
well-understood equilibrium cases, nonequilibrium statistical
physics remained challenging for a long period, partly due
to the lack of well-characterized states or principles such as
free-energy minimization for equilibrium systems. The last
three decades marked a breakthrough in the understanding
of nonequilibrium statistical physics, especially in the far-
from-equilibrium and fluctuation dominating regimes. New
physical laws, such as fluctuation theorems [2,3], and theo-
retical techniques, such as stochastic thermodynamics [4,5],
proved to be very successful in a broad range of nonequilib-
rium processes in small systems in which thermal fluctuations
dominate.

A major signature for nonequilibrium states that differs
from the equilibrium ones is that some net fluxes, such as
mass, momentum, heat, or probability, are generated so that
detailed balance is broken. These fluxes can be transient (as
in the case of relaxation towards an equilibrium state), steady
(a time-independent constant flux as in the case of nonequi-
librium steady states), or time varying (as in a system under
time-dependent external drives or system with autonomous
dynamics). Experimentally, a nonequilibrium state can be
conveniently generated by creating concentration gradients
(such as temperature, velocity, or potential) to produce some
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generalized forces to drive the system. When the generalized
force is independent of time, the system can be driven into
a nonequilibrium steady state (NESS), which is perhaps the
simplest and tractable nonequilibrium states [2,3]. For exam-
ple, the fluctuation theorem was first discovered [6,7] in NESS
and then later extended to other nonsteady scenarios. A time-
independent steady-state distribution, albeit non-Boltzmann,
exists in NESS, which can often serve as a convenient quantity
in quantitative characterization of the nonequilibrium states
theoretically, and also can be measured accurately in exper-
iments or simulations if a sufficient measurement duration is
allowed (which is often achievable since the system is steady).
In the NESS, entropy is produced at a positive constant rate on
average, which is a measure of irreversibility.

Even for a nonequilibrium steady state (NESS), it is dif-
ficult to describe nonequilibrium phase transitions between
different NESSs and their relationship to some microscopic
models. The transition between different NESSs is of interest,
both in the foundation of statistical physics and for design-
ing the concept of engines driven between NESSs. Important
theoretical frameworks and physical laws, such as steady-
state thermodynamics [8,9] and Hatano-Sasa equality [10], for
quantifying transitions between initial and final NESSs were
established and experimentally verified [11].

A variety of experimental systems has been set up to
explore the NESS systems. Examples include single Brow-
nian particles in a trap moving at constant speed [12–14] or
driven by a constant force across a periodic potential [15,16],
power fluctuations in a vertically agitated granular gas [17],
in liquid-crystal electroconvection [18], temperature and heat
flux fluctuations in turbulent convection [19,20], and fluctu-
ations of entropy production in driven RC circuits [21–24],
autonomous Brownian gyrators [25,26], and colloidal
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monolayers suspended near a liquid-solid interface [27,28].
These experiments provided new insights into the nature of
nonequilibrium processes under NESS conditions. To this
end, a theoretically tractable system that exhibits a rich variety
of NESS behavior would serve as a paradigm model to gain
deeper insights into the detailed properties quantitatively in
NESSs.

From a historical perspective, the classic Ehrenfest two-urn
noninteracting model [29] was proposed in 1907 to resolve
the microscopic time-reversal and Poincaré recurrence para-
doxes [1,30] (which accompanied the H-theorem [31] in
1872 to explain how a system approaches equilibrium from
nonequilibrium and the associated irreversibility) and clarify
the relationship between reversible microscopic dynamics and
irreversible macroscopic thermodynamics. The classic two-
urn Ehrenfest model [29] is a system of N particles distributed
in two urns. Each particle in an urn is randomly chosen and put
into the other with equal probability. The Ehrenfest two-urn
model is a simple and tractable model to clearly illustrate
the conceptual foundation of statistical mechanics and the
relaxation towards equilibrium. The model was subsequently
exactly solved by Kac [32] and has often been used to demon-
strate the second law of thermodynamics and the approach to
equilibrium.

In recent years, a model based on the classic noninteract-
ing Ehrenfest two-urn model for nonequilibrium irreversible
processes has been proposed with the introduction of parti-
cle interactions in a physical way [33]. This two-urn model,
although nontrivial, can be solved to some extent and ob-
tain some nice analytical results. This modified Ehrenfest
model, with particle interaction explicitly imposed, opened a
new avenue to study various nontrivial nonequilibrium sta-
tistical mechanics in an analytically tractable model. Such
urn model with interparticle interactions within the same
urn has been further generalized to an arbitrary number of
urns and the equilibrium properties, such as uniform and
nonuniform population states and the associated first-order
transition, were sorted out analytically in detail [34]. Sub-
sequently, the interacting Ehrenfest model was generalized
to study the nonequilibrium steady states in the three-urn
system with bias transition probabilities [35]. The three-urn
system has been shown to exhibit two distinct nonequilibrium
steady states of uniform (uNESS) and nonuniform (nuNESS)
particle distributions [35]. NESS refers to the situation where,
although particles flow in and out of each urn, the aver-
age population remains constant in time in the steady state;
uNESS corresponds to the case where the steady particle
populations are the same in each urn, whereas nuNESS is
for the case where the average steady populations in some
of the urns are different. As the interparticle attraction varies,
a first-order nonequilibrium phase transition occurs between
these two NESSs characterized by a coexistence regime. The
phase boundaries, the NESS particle distributions near the
saddle points and the associated particle fluxes, average urn
population fractions, and the relaxational dynamics to the
NESSs were obtained analytically and verified numerically.
A generalized nonequilibrium thermodynamics law explicitly
identifying the heat, work, energy, and entropy of the system
was established.

In this paper, we report our investigations of the
Ehrenfest urn model with interactions with an even number of
urns placed on a ring and the discovery of different possible
nonequilibrium nonuniform steady states that are absent for an
odd number of urns. In particular, we showed that for four urns
arranged in a ring, there is a different stable nuNESS phase
with minimal but nonvanishing nonuniformity in addition to
the one with maximal nonuniformity which exists for any
M-urn on a ring with M � 3. Our previous paper [35,36]
studied the nonequilibrium behavior of urns in a ring in which
the main explicit results were for M = 3. The present four-urn
case is qualitatively different and is rooted in a different sym-
metry, where the nuNESS emerges with a different bifurcation
mechanism. The paper is organized as follows. Section II
gives a brief review of the multiurn model at equilibrium and
the notion of uniform and nonuniform population states. The
major theoretical results are presented in Sec. III, including
the complete phase diagram for the four-urn ring systems,
the signatures and generation mechanisms for various NESSs,
together with the corresponding fluxes. The thermodynamic
stability of these NESSs is analyzed in Sec. IV. Section V
presents the Monte Carlo simulations for the three-urn and
four-urn ring models to explicitly verify the validity of the
theoretical results.

II. EHRENFEST MULTIURN MODEL WITH
INTERACTION: EQUILIBRIUM CASE

The Ehrenfest multiurn model is based on the classic non-
interacting Ehrenfest urn model with two urns, but generalized
to M urns with the introduction of interactions for particles
within the same urn [34]. For N particles in M urns in the
large-N limit, the state of the system is labeled by the par-
ticle occupation fraction in each urn, �x = (x1, x2, . . . , xM−1),
where xi is the fraction of particle in the ith urn, with xM =
1 − ∑M−1

i=1 xi. The energy of the interacting particles (in units
of kBT ≡ 1/β) in the urns is given by

βE = Ng

2

M∑
i=1

x2
i , (1)

where g < 0 denotes the pairwise intra-urn particle attrac-
tion energy. For the equilibrium case, the jumping rates of a
particle from one urn to another are the same, and detailed
balance is obeyed. The (M − 1)-dimensional phase space is
defined by the vector �x ≡ (x1, . . . , xM−1)ᵀ. The system can
achieve thermal equilibrium and the equilibrium population
distribution in the urns follows Boltzmann [34], as

ρeqm(�x) = N eN f (�x)√∏M
i=1 xi

,

N−1 ≡
∫

∑M−1
i=1 xi�1

M−1∏
i=1

dxi
eN f (�x)√∏M

i=1 xi

(2)

where f (�x) = −
M∑

i=1

(
xi ln xi + g

2
x2

i

)
. (3)

A particle in the ith urn jumps to the jth urn with
the corresponding transition probability Ti j ≡ 1

e−g(xi−x j )+1
.
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FIG. 1. Schematic picture of the interacting Ehrenfest M-urn
model on a ring. M urns placed on a ring and particle transitions
are allowed between neighboring urns. The particle number in the
ith urn is denoted by ni. For convenience, we define n0 ≡ nM . The
jumping rates in the counterclockwise and clockwise directions are
p and q, respectively. Ki→ j represents the net particle flow rate from
the ith to the jth urn.

Without interaction (g = 0), we have Ti j = 1
2 . As the interpar-

ticle interaction strength is varied, phases of different levels
of nonuniformity emerge and their stabilities are calculated
analytically. Only the most nonuniform phase is stable and
other nonuniform phases are all unstable at equilibrium [34].
In particular, the coexistence of locally stable uniform and the
most nonuniform phases connected by first-order transition
occurs. The phase transition threshold and energy barrier were
derived exactly together, with the phase diagram obtained an-
alytically [34]. In addition, it was found that for even M � 4,
a nonuniform state emerges at g � −M but is always unstable
and hence cannot be observed in practice.

III. NONEQUILIBRIUM STEADY STATES
FOR MULTIURN ON A RING

Nonequilibrium scenario occurs when there is a bias in the
jumping rates of particles between the urns, and the nonequi-
librium behavior depends on the connection network topology
among the urns. To be specific and for theoretical conve-
nience, the system of M urns connected in a ring is considered
as a paradigm model for investigating the nonequilibrium
steady-state properties and their associated thermodynamics.
The periodic boundary condition can be conveniently re-
spected by defining the variable x0 ≡ xM . To establish the
nonequilibrium states, a jumping rate is introduced such that
the probability of anticlockwise (clockwise) direction is p (q).
For the sake of convenience, p + q = 1 is imposed which only
changes the timescale. p = q = 1

2 reduces to the equilibrium
scenario. The schematic picture of the M-urn ring model
was shown in [36] and is shown here again in Fig. 1 for
completeness.

The population dynamics of the urns is governed by the
following nonlinear coupled ordinary differential equations:

d�x
dt

= �A(�x), where

Ai(�x) ≡ Ki−1→i(xi−1 → xi ) − Ki→i+1(xi, xi+1) and (4)

Ki→i+1 = pxi − (1 − p)xi+1eg(xi+1−xi )

eg(xi+1−xi ) + 1
, i = 0, 1, . . . , M − 1,

(5)

is the net counterclockwise particle flux from i to i + 1 urns.
The corresponding Ai(�x) are (i = 1, 2, . . . , M − 1)

Ai(�x) = − pxi

e−g(xi−xi+1 ) + 1
+ qxi+1

e−g(xi+1−xi ) + 1

+ pxi−1

e−g(xi−1−xi ) + 1
− qxi

e−g(xi−xi−1 ) + 1
, (6)

which do not have explicit time dependence, i.e., the system
is autonomous. To quantify how nonuniform the state is, one
can define

� =
√√√√ 1

M(M − 1)

∑
i �= j

(xi − x j )2 (7)

as the nonuniformity of the state [34]. � = 0 for the uniform
state and � is larger if the population fractions are more
nonuniform.

The fixed points of the dynamical system (4) are given by
�A(�x∗) = 0, which leads to the condition of a constant flux
between all urns,

Ki→i+1 = Kss, i = 0, 1, . . . , M − 1. (8)

It can be shown that the equilibrium state is given by for p =
1
2 , which is a necessary and sufficient condition for Ki→i+1 =
0. And for p �= 1/2, a NESS with a nonzero constant Kss

is possible. The stability of the fixed point is determined by
the (M − 1) × (M − 1) Jacobian matrix a ≡ ∂ �A

∂�x |�x∗ . The fixed
point is dynamically stable if there is no positive real part in all
the eigenvalues of a. In general, a potential cannot be derived
with �A(�x) = ∇�(�x) for some potential function �(�x) since
the matrix a is, in general, asymmetric, even in the vicinity
of the steady-state fixed point. For instance, at the uniform
NESS fixed point, one still has a �= aᵀ unless p = 1

2 , in which
equilibrium can be achieved and � = 1

2 (�x − �x∗)ᵀa(�x − �x∗)
near the equilibrium fixed point.

A. Phase diagrams for three-urn and four-urn models on a ring

For discussion convenience, here we first show the phase
diagrams obtained theoretically for the three-urn and four-urn
models on a ring. The three-urn phase diagram has been
derived and discussed in detail in [35,36], and is shown
here in Fig. 2(a) to compare with the phase diagram for
the four-urn case. The phase space is two dimensional for
the three-urns model, and due to the Poincaré-Bendixon
theorem [37], the absence of a stable fixed point in some
regime in the two-dimensional phase plane results in limit
cycle oscillations. The transition from the uNESS to nonequi-
librium periodic state (NEPS) at g = −3 is characterized
by a supercritical Hopf bifurcation [36], whereas the tran-
sition from the NEPS to nuNESS [the dot-dashed phase
boundary in Fig. 2(a)] is characterized by an infinite-
period bifurcation [36]. In addition, there are two coexisting
regions: coexist I for the stable phases of uNESS and
nuNESS, and coexist II for NEPS and nuNESS. The pres-
ence of the coexistence regions signifies the corresponding
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FIG. 2. (a) Phase diagram of the three-urn model showing uNESS, nuNESS, and NEPS. The coexistence regions of uNESS and nuNESS
(coexist I) and nuNESS and NEPS (coexist II) are also labeled. (b) Phase diagram of the four-urn model showing different NESSs. The stability
phase boundary obtained from (14) is shown by the dot-dashed curve. Only the nuNESS(i) phase exists in the region marked by *.

first-order nonequilibrium phase transitions. For the results on
the four-urn model on a ring, the phase diagram is displayed in
Fig. 2(b), showing the uniform NESS and two distinct nonuni-
form NESSs in which one of them [nuNESS(i)] cannot occur
for odd values of M. The other nuNESS [nuNESS(ii)] corre-
sponds to the NESS that is maximally nonuniform, which is
the same type as the nuNESS in the three-urn model. There are
two nonoverlap coexistence regions: the coexisting uNESS
and nuNESS(ii) regime separated by the g = −4 line from
the coexisting nuNESS(i) and nuNESS(ii) regime. The phase
boundaries are derived and the properties of these NESSs are
discussed in the following sections.

B. uNESS: NESS with the same population in each urn

Notice that the uniform solution of x∗
i = 1/M is always a

fixed point in (4) with the flux

KuNESS = N (p − q)

2M
= N (2p − 1)

2M
. (9)

The uNESS remains the only fixed point and is stable for
g > −M, but becomes unstable for g < −M, as illustrated
in Fig. 3. Notice that the uNESS fixed point is independent
of p and g; its stability is also independent of p. In addition
to the uniform state, nonuniform fixed points with different
values for x∗

i ’s (nonuniform NESS) can exist in which some
of them are related by symmetry. For example, Figs. 3(a) and
3(b) show that the four symmetry-related stable and unstable
nonuniform fixed point pairs correspond to nuNESS(ii) for the
four-urn ring.

C. nuNESS(ii): NESS with maximal
nonuniformity–saddle-node bifurcation

It has been shown in [35] for the three-urn model that
uNESS and nuNESS and their bistable coexisting states can
occur. Such nuNESS [named nuNESS(ii) in this paper] oc-
curs via a saddle-node bifurcation in a regime of stronger
attraction (g sufficiently negative) and is characterized by the
properties that one of the population fraction is much larger

than the rest (i.e., a state with maximal nonuniformity). For
larger values of M, such nuNESS(ii) still persists. The emer-
gence of the nuNESS(ii) can be understood by examining the
nontrivial fixed points of (4), which are plotted in Fig. 4 for
the four-urn ring for illustration. For large negative values of
g, stable and unstable nuNESS(ii) states occur in pairs (filled
and open squares in Fig. 5). As the interparticle attraction
decreases, the separation between the stable and unstable pair
of roots decreases and annihilates each other at the phase
boundary (solid curve in Fig. 2). Figure 4(a) plots the stable
(solid curves) and unstable (dashed curves) branches of the
nuNESS(ii) fixed point pairs in the four-urn ring as a func-
tion of −g. These fixed point pairs emerge via a saddle-node
bifurcation as the interparticle attraction increases to some
threshold value. Figure 4(b) shows the eigenvalues (which are
all real and negative) of the stable saddle-node fixed point as
a function of g, verifying its stability. The phase boundary can
be determined from the condition when the stable and unstable
nontrivial fixed points of (4) coincide, and are shown (solid
curve) in the phase diagrams in Fig. 2.

D. nuNESS(i): NESS with minimal but nonvanishing
nonuniformity-pitchfork bifurcation

for even number (� 4) of urn

The nuNESS(i) is specified by the nonuniform popula-
tion fraction that takes the form (x1, x2, . . . , xM−1, xM ) =
(x∗, 2

M − x∗, x∗, 2
M − x∗, . . . , x∗, 2

M − x∗), where x∗ can be
determined from the root(s) of

x∗ = 2

M[1 + e2g(x∗− 1
M )]

. (10)

x∗ = 1
M is always a trivial root that corresponds to uNESS, and

we shall focus on the nontrivial root of x∗ �= 1
M and denote this

root by xp f (g). It is easy to see that (xp f ,
2
M − xp f , xp f ,

2
M −

xp f , . . . , xp f ,
2
M − xp f ) is a root with minimal but nonvanish-

ing nonuniformity �. Notice that if xp f is a nontrivial root,
then so is 2

M − xp f , and hence the nontrivial roots always
emerge in a symmetric (symmetric about 1

M ) pair. The pair
of fixed points is separated in phase space by a distance of
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FIG. 3. Projection of the phase space onto the x1 − x3 plane showing the locations of the fixed points corresponding to different NESSs.
Stable and unstable fixed points are denoted by filled and open symbols, respectively. uNESS (◦), nuNESS(i) (�), nuNESS(ii) (�). p = 0.8.
(a) g = −3.8. (b) g = −3.78. (c) g = −4.1, where the stable nuNESS(i) fixed point pair emerges.

FIG. 4. (a) Roots of the nuNESS(ii) fixed points as a function of g. The stable and unstable phases are denoted by solid and dashed curves,
respectively. (b) Eigenvalues plotted as function of g with p = 0.8 for the stable nuNESS(ii) phase in the four-urn model.

FIG. 5. (a) Roots from Eq. (10) for the nuNESS(i) in the four-urn model. The uNESS root of 1
4 is shown by the horizontal line. A nontrivial

symmetric pair of roots for the nuNESS(i) emerges when g < −4, indicating the classic scenario of a pitchfork bifurcation. The distance
between the symmetric pair of roots in (three-dimensional) phase space as a function of g is shown by the dot-dashed curve. (b) Real part of the
eigenvalues of a plotted as function of g with p = 0.8 for the four-urn model. The eigenvalue for the simplified model in Eq. (16) is also shown
by the dashed curve, indicating that it is identical to the real branch of the eigenvalue of the nuNESS(i). (c) Eigenvalue plotted as function of g
for the simplified model of the nuNESS(i).
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d = 2
√

M − 1|xp f (g) − 1
M |. Figure 3(c) shows the symmetric

pair of stable nuNESS(i) fixed points (filled diamond) which
lie on the x1 = x3 line in the projected x1 − x3 phase plane.
Figure 5(a) plots the roots in Eq. (10) as a function of g. 1/M
is always a trivial uniform root that is independent of g and be-
comes unstable when g < −4, accompanied by the emergence

of a nontrivial symmetric stable pair of roots for the
nuNESS(i). The distance between the symmetric pair of roots
in three-dimensional phase space is also shown in Fig. 3(a).

The stability of nuNESS(i) can be revealed by examining
the Jacobian matrix of this state for the four-urn ring; a ≡
∂ �A
∂�x |xp f can be calculated to give

a =

⎛
⎜⎜⎜⎝

g(4 − 8p)x3 + 6gpx2 − x(gp + g + 2p − 2) − 1 (1 − 2p)x
(
8gx2 − 6gx + g + 2

) −x
[
p
(
8gx2 − 6gx + g + 2

) + 2g(1 − 2x)x
]

(1 − 2x){p[gx(4x − 1) + 1] + g(1 − 2x)x} x[g(2x − 1) − 2] (2x − 1)
{

p[gx(4x − 1) + 1] − 2gx2 − 1
}

x{g(2x − 1)[p(4x − 1) − 2x + 1] + 2(p − 1)} (2p − 1)x
(
8gx2 − 6gx + g + 2

)
g(2x − 1)x[p(4x − 1) − 2x + 2] + 2px − 1

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣
xp f (g)

,

(11)

whose eigenvalues can be explicitly computed as

−1 − 2gxp f (g)[1 − 2xp f (g)], 1
2 [−1 − 2gx(1 − 2x) ±

√
γ (x, p, g)]

∣∣
xp f (g), (12)

γ (x, p, g) ≡ 4x2[g2(1 − 2p)2 + 10g(1 − 2p)2 + 8(2p2 − 2p + 1)] + 256g2(1 − 2p)2x6 − 384g2(1 − 2p)2x5

− 4x[g(1 − 2p)2 + 8p2 − 8p + 4] + 16g(13g + 8)(1 − 2p)2x4 − 16g(3g + 8)(1 − 2p)2x3 + 1. (13)

Figure 5(b) plots the real part of the three eigenvalues as a
function of g. For g not much less than −4, there is only
one real negative eigenvalue and the real part of the complex
eigenvalue pair is also negative. As g becomes more negative,
all three eigenvalues become real and eventually one of the
eigenvalues becomes positive and the nuNESS(i) loses its sta-
bility. The stability phase boundary for the nuNESS(i) phase
can be calculated theoretically from the condition of

−1 − 2gxp f (g)[1 − 2xp f (g)] + √
γ [xp f (g), p, g] = 0, (14)

which gives the phase boundary p = pp f (g) as shown by the
dot-dashed curve in the phase diagram in Fig. 2(b).

To analyze the bifurcation nature of such nuNESS(i) phase
for general (even) values of M is challenging due to the dy-
namics in the high-dimensional phase space. To gain further
insight into the nature of bifurcation at g = −M, notice that
Eq. (10) can be rewritten as

y = 1

M
tanh[−gy], y ≡ xp f (g) − 1

M
. (15)

Motivated by Eq. (15), we propose the following one-
dimensional simplified dynamical model to describe the
bifurcation behavior of nuNESS(i):

ẏ = 1

M
tanh[−gy] − y ≡ φ(y). (16)

It is easy to see that y = 0 is always a trivial fixed point
in (16), and a pair of nonzero fixed points ±y∗ �= 0, given
by φ(y∗) = 0, emerges for g < −M. The simplified model
(16) undergoes a classic supercritical pitchfork bifurcation in
which the emerged ±y∗ is always stable and accompanied by
the loss of stability of the zero fixed point. The stability of y∗
can be verified by calculating φ′(y∗) = −(1 + g/M ) + My∗2,
which is plotted as a function of g for the four-urn ring
in Fig. 5(b). Remarkably, the eigenvalue of the simplified
one-dimensional model (16), φ′(y∗), is identical to the one
of the real eigenvalue of the full M − 1-dimensional system,

confirming the validity of the simplified model in the analysis
of the pitchfork bifurcation of the nuNESS(i) phase. For other
even values of M, the eigenvalues φ′(y∗) are always negative
for g < −M, as shown in Fig. 5(c).

E. NESS fluxes and nonuniformity

The NESS flux in the nuNESS(i) phase is given by

KnuNESS(i) = N
(2p − 1)xp f (g)

1 + eg[ 2
M −xp f (g)]

, (17)

where xp f (g) is the root of x in Eq. (10). The corresponding
NESS flux in this phase is evaluated from Ki→i+1 in Eq. (5),
which can be shown to be independent of i with xi

′s being
the root of the nuNESS(i) stable fixed point. Similarly, the
nonuniformity is given by (7) with the xi

′s taken to be the
stable nontrivial fixed point. Figure 6(a) shows the NESS
fluxes as a function of g for fixed p = 0.8, displaying the con-
stant fluxes in various NESSs. In general, the nuNESS fluxes
decrease as the attraction strength increases, and uNESS is
significantly larger than nuNESS(ii). The nuNESS(i) flux is
even greater than that of the uNESS.

The nonuniformity in the nuNESS(i) phase can be calcu-
lated by invoking (7) and is given by

�nuNESS(i) =
√

2M

M − 1

∣∣∣∣xp f (g) − 1

M

∣∣∣∣. (18)

Figure 6(b) shows � in various NESSs as a function of g
for fixed p = 0.8 for the four-urn ring. � ≡ 0 for uNESS
as expected, and � increases with the interparticle attraction
strength. � is significantly larger in the nuNESS(ii) as com-
pared with that of nuNESS(i), as anticipated. In addition, we
verified for the four-urn ring that nuNESS(i) is really the state
with minimal but nonvanishing nonuniformity and the stable
nuNESS(ii) is really the state of maximal nonuniformity in
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FIG. 6. (a) NESS fluxes as a function of g for p = 0.8 for the uNESS, nuNESS(i) and nuNESS(ii) phases in the four-urn ring. (b) Nonuni-
formity � as a function of g for the case in (a).

the sense that for all the roots in the fixed point equation
�A(�x) = 0 (all stable and unstable roots), the stable nuNESS(i)
and nuNESS(ii) phases are the states of minimal (but nonvan-
ishing) and maximal values of �, respectively.

F. Absence of NEPS in the four-urn ring

As shown in [36], NEPS occurs in the three-urn model in
the large-p and g < −M regime. However, such a periodic
nonequilibrium state does not exist for the four-urn ring de-
spite the emergence of complex eigenvalue pairs due to Hopf
bifurcation for g < −4. This is due to the presence of the
different stable nuNESS(i) phase that attracts the otherwise
periodic trajectories to this stable fixed point and kills the limit
cycle. Since nuNESS(i) cannot exist for odd M, we antici-
pate stable oscillatory dynamics such as NEPS can occur for
odd M.

IV. FLUCTUATIONS AND THERMODYNAMIC
STABILITY OF THE NESSS

Although a lot is known about equilibrium fluctuations,
the current understanding of fluctuations in nonequilibrium
states is rather limited [38]. For the NESSs in our multiurn
system consisting of a large number of particles, there are
considerable fluctuations in particle numbers and their fluxes.
These fluctuations may vary spatially in different urns owing
to the strong interactions between the particles and large fluc-
tuations that can result from collective effects near the phase
transitions.

The fluctuations in a NESS can be revealed by examining
the steady-state particle distribution functions. As shown in
[35], using the Wentzel-Kramers-Brillouin (WKB, or saddle-
point) method, one can obtain the linearized Fokker-Planck
equation and hence the steady-state distribution near the sad-
dle point can be described by the deviation �y = �x − �x∗ as

ρss ∝ eN �yᵀc�y, (19)

where �x∗ is the stable fixed point of the steady state. The
inverse of the (M − 1) × (M − 1) matrix c can be solved from
the Lyapunov equation,

ac−1 + c−1aᵀ = 2b, (20)

with ai j ≡ ∂x j Ai|�x∗ and b ≡ B(�x∗), and with Bi j (�x) given by

Bii(�x) = pxi

e−g(xi−xi+1 )+1
+ qxi+1

e−g(xi+1−xi ) + 1

+ pxi−1

e−g(xi−1−xi ) + 1
+ qxi

e−g(xi−xi−1 ) + 1
, (21)

Bi,i+1(�x) = Bi+1,i(�x) = − pxi

e−g(xi−xi+1 ) + 1
− qxi+1

e−g(xi+1−xi ) + 1
.

(22)

It can be shown that the stability of the fixed point of the
dynamical system implies that the eigenvalues (which are real
since c−1 is symmetric) of c−1 are all negative and hence
the steady state is also thermodynamically stable [36]. The
eigenvalues of c−1 can also provide valuable information on
the local thermal fluctuating properties of the NESSs. Below
we shall calculate c−1 and examine its eigenvalues in various
NESSs. For the uNESS, the matrices a, b, and hence c−1

can be explicitly calculated for arbitrary values of M. For the
four-urn ring, we have, for the uNESS,

a = −1

2

⎛
⎜⎝

1 + p + 3g
8 2p − 1 p + g

8

−p − g
8 1 + g

4 −1 + p − g
8

1 − p + g
8 1 − 2p 2 − p + 3g

8

⎞
⎟⎠, (23)

and its eigenvalues are − g+4
4 and − g+4

8 ± (p − 1
2 )i. Notice

that for NESSs with p �= 1
2 , an imaginary part of the eigenval-

ues always exists, which gives rise to the oscillatory features
in the NESSs. b and c−1 for uNESS are given by

b = 1

8

⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠

and c−1 = 1

g + 4

⎛
⎝−3 1 1

1 −3 1
1 1 −3

⎞
⎠, (24)

whose eigenvalues are − 1
g+4 and − 4

g+4 (multiplicity 2). It can
be seen that the real part of the eigenvalues of a and the
eigenvalues of c−1 are always negative (positive) if g > −4
(g < −4), indicating that the uNESS becomes unstable both
dynamically and thermodynamically as the attraction strength
is beyond −M.
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FIG. 7. (a) Eigenvalues of c−1 as a function of g for p = 0.8 for the nuNESS(i) phase in the four-urn ring. (b) Span size of fluctuations of
the nuNESS(i), 2

√
max{−λc−1}/(2N ), as a function of g for p = 0.7 and 0.8. The distance between the symmetric pair of roots in phase space

as a function of g is shown by the dot-dashed curve.

For nuNESS(i), a is given by (11) and

b = [1 − 2xp f (g)]xp f (g)

⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠. (25)

c−1 can then be solved from the Lyapunov equation (20).
Figure 7(a) shows the three eigenvalues of c−1, which are
all negative, as a function of g for a fixed value of p = 0.8,
verifying the thermodynamical stability of nuNESS(i).

For nuNESS(ii), the explicit forms for a and b are tedious
and will not be listed here. Nevertheless, they can be evaluated
at the nuNESS(ii) fixed points to arbitrary accuracy, and c−1

can then be obtained from (20).

V. MONTE CARLO SIMULATIONS

To explicitly verify the theoretical results in previous sec-
tions, we carry out Monte Carlo simulations for the M-urns
system. In the simulation, a total of N (N is an integer multiple
of M) particles are in the system consisting of M urns, and the
population of the i urn is denoted by ni. The urns are placed
on a bidirectional ring network with anticlockwise and clock-
wise jump rates p and q, respectively. p + q = 1 is imposed,
which only sets the timescale. The transition probability that
a particle from the ith urn jumps to the jth urn is

Ti→ j = 1

1 + e− g
N (ni−n j−1)

. (26)

A particle is chosen at random out of all the particles in the M
urns and a transition jump is made according to the probability
given in (26). If p = q, then with the above particle transi-
tion rules, the system satisfies the detailed balance condition
such that there is vanishing net particle flux on the ring. In
general, if p > q, there will be a net anticlockwise flux and
a NESS state can be achieved. After some sufficiently long
transient time, the populations in each urn or the fraction
xi(t ) is recorded for a long sampling time. Time is in Monte
Carlo steps per particle (MCS/N). One MCS/N means that on
average, every particle has attempted a jump.

Figure 8 plots the Monte Carlo simulation results of the
population fraction map for the three-urn model showing

various NESS, NEPS, and their coexistence regions as pre-
dicted by the theory and shown in the phase diagram given
by Fig. 2(a). For g > −3, the system stays around the uNESS
and fluctuates around the stable ( 1

3 , 1
3 ) uniform fixed point,

as shown in Fig. 8(a). The coexistence of uNESS and nuNESS
(coexist I) can be seen in Fig. 8(b), in which the system spends
time around the stable uNESS and the three nuNESS saddle
points. The coexist II region with simultaneous occurrence of
NEPS and nuNESS can be seen in Fig. 8(c), showing that
the system switches from stable periodic NEPS to one of the
nuNESS stochastically. Finally, the pure NEPS oscillation can
be clearly seen in Fig. 8(d) in which the population fractions
periodically oscillate from high and low values.

MC simulations are also carried out for the four-urn ring
to confirm the nuNESS(i) in the previous section. Figure 9
plots the projection of the population fraction map onto the
x1 − x3 plane to show the various NESSs and their coexistence
regimes. The coexistence of uNESS and nuNESS(ii) is shown
in Fig. 9(a), in which the parameters are chosen such that these
NESSs are far apart in phase space and transition from one
NESS to another is quite impossible in the affordable duration
of simulation times. The coexistence of the two nuNESSs
is shown in Fig. 9(b). Notice that the stochastic fluctuations
around two symmetric nuNESS(i) saddle points (marked by
filled circles along the x1 = x3 line) give rise to the smear
basin of the nuNESS(i) phase characterized by a relatively im-
probable region near the unstable uNESS saddle point (open
circle). When the parameters for the coexistence of nuNESS(i)
and nuNESS(ii) are closer to the phase boundary, the basin of
the nuNESS(i) phase appears to be broadened, as shown in
Fig. 9(c). Finally, only pure nuNESS(i) is observed for high
values of p and g � −4 [the * region in the phase diagram
given by Fig. 2(b)], as shown in Fig. 9(d). Stable NEPS is
never observed in the four-urn ring simulations.

To understand the large spreading of the population
fraction for the nuNESS(i) state, one can estimate the
width of the distribution about the nuNESS(i) saddle point,
which can be obtained from the eigenvalues of c−1 as
2
√

max{−λc−1}/(2N ). Figure 7(b) plots the span of the fluc-
tuations about the nuNESS(i) fixed points, indicating that the
fluctuations become very large near the phase boundaries.
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FIG. 8. Monte Carlo simulation results of the population fraction map projected on the x1 − x2 plane of 3000 particles in the three-urn
model. (a) p = 0.6 and g = −2.6 in the uNESS. (b) p = 0.6 and g = −2.85 in the uNESS and nuNESS coexistence region. (c) p = 0.7 and
g = −3.08 in the nuNESS and NEPS coexistence region. (d) p = 0.8 and g = −3.1 in the NEPS.

Furthermore, since there are two symmetric nuNESS(i) saddle
points separated by a distance [shown by the dot-dashed curve
in Fig. 7(b)] that is comparable with the fluctuation spans,
the two symmetric stable nuNESS(i) saddle points have large
overlaps in stochastic fluctuations and thus resulted in a rather
smear basin of attraction of the stochastic trajectories, as ob-
served in Figs. 9(b)–9(d).

VI. SUMMARY

In this paper, the Ehrenfest urn model with interactions
with an even number of urns placed on a ring is in-
vestigated for different possible nonequilibrium nonuniform
steady states. For the four-urn ring, we proved that indeed
there exists a different stable nuNESS phase [nuNESS(i)]
with minimal (but nonvanishing) nonuniformity in addition
to the one with maximal nonuniformity [nuNESS(ii)] and
the uNESS that were reported for the three-urn case. Such

a nuNESS(i) phase emerged from a pitchfork bifurcation
that is only possible for an even number of urns. There are
two coexistence regions, i.e., one for the coexisting uNESS
and nuNESS(i) and another for the coexisting nuNESS(i)
and nuNESS(ii). The phase diagram together with the phase
boundaries for the four-urn ring and their NESS fluxes are
calculated theoretically. These findings are also confirmed by
explicit Monte Carlo simulations of the three-urn and four-
urn ring models. In addition, the physics due to the distinct
features of symmetric pair emerged nuNESSs allows one to
investigate the characteristics of the nonequilibrium phase
transitions between uNESS and nuNESS, as well as between
distinct nuNESSs not related by symmetry.

Compared with the three-urn case, the four-urn model can
allow the coexistence of distinct nuNESSs, not related by
symmetry, which correspond to the minimal and maximal
nonuniformity. Since the internal entropy production rate is
a decreasing function of the nonuniformity, it implies that
the traditional principle of minimum or maximum entropy
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FIG. 9. Monte Carlo simulation result of the population fraction map projected on the x1 − x3 plane of 20 000 particles in the four-urn
model on a ring, for a simulation time of 8000 MCS/N. Each cluster of points starts from different initial conditions. (a) p = 0.7 and g = −3.6
showing the coexistence of the uNESS and nuNESS(ii) phases. The stable fixed points are shown by the filled symbols: uNESS is marked
by (•) and for nuNESS(ii) by (�). (b) p = 0.8 and g = −4.05, showing the coexistence of the nuNESS(i) and nuNESS(ii) phases. The stable
fixed points calculated from Eq. (10) for nuNESS(i) (�) and nuNESS(ii) (�) are shown by the filled symbols. The unstable uNESS fixed point
of ( 1

4 , 1
4 ) is also marked by an open circle (◦). (c) p = 0.95 and g = −4.05, showing the coexistence of the nuNESS(i) and nuNESS(ii) phases.

(d) Only the nuNESS(i) exists for p = 0.975 and g = −4.02.

production is invalid in the selection of the most stable
nonuniform NESS among them.

Higher values of M > 4 will be investigated in the future
by simulations and by stability analysis in detail since more
complex dynamics might result due to the higher dimension-
ality of the phase space involved. Since the M-urn ring model
has recently been shown [39] to be related to the M-state Potts
model [40] with special dynamical rule, our result indicates

possible different nonequilibrium states in the even number of
state Potts model.
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