
PHYSICAL REVIEW E 101, 012123 (2020)

Phase transitions in Ehrenfest urn model with interactions:
Coexistence of uniform and nonuniform states
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A model based on the classic noninteracting Ehrenfest urn model with two urns is generalized to M urns
with the introduction of interactions for particles within the same urn. As the inter-particle interaction strength
is varied, phases of different levels of nonuniformity emerge and their stabilities are calculated analytically.
In particular, coexistence of locally stable uniform and nonuniform phases connected by first-order transition
occurs. The phase transition threshold and energy barrier can be derived exactly together with the phase diagram
obtained analytically. These analytic results are further confirmed by Monte Carlo simulations.
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I. INTRODUCTION

In 1872, when Boltzmann formulated the H-theorem [1] to
explain how a system approaches equilibrium from nonequi-
librium and the irreversibility associated with the second
law of thermodynamics, it also led to the microscopic time
reversal and the Poincaré recurrence paradoxes [2], which
were not fully understood at that time. Decades later, the
Ehrenfest two-urn model [3] was proposed in 1907 to resolve
the paradoxes and clarify the relationship between reversible
microscopic dynamics and irreversible thermodynamics.
The classic Ehrenfest model [3] considered a total of N
particles distributed in two urns with each particle in an urn
to be chosen randomly and put into the other with equal
probability. The Ehrenfest urn model is a simple and tractable
model to understand or illustrate the conceptual foundation of
statistical mechanics and the relaxation to equilibrium. This
model was solved exactly by Kac [4] and has been often used
to demonstrate the second law of thermodynamics and the
approach to equilibrium.

Later on, the Ehrenfest model was generalized to the case
of unbalanced jumping rates between the two urns [5,6].
The two-urn Ehrenfest model was subsequently extended to
multiurn systems [7–10] to investigate the associated nonequi-
librium steady states. Its various generalizations have been
applied to investigate a variety of nonequilibrium phenomena.
The continuous time limit of the evolution of the population
probability state led to a linear Fokker- Planck equation
[4,11] which was further modified to incorporate the nonlinear
contribution [12–14], which is motivated by the processes
associated with anomalous-diffusion phenomena [15–17].
The associated generalized H theorem for the nonlinear
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Fokker-Planck equation was also studied [18–22]. However,
most of such generalization is non-interacting, or the inclusion
of interaction is phenomenological and not explicit. Until
recently, the two-urn Ehrenfest model was extended to in-
clude particle interactions inside an urn [23]. In the two-urn
Ehrenfest model with interaction, particles can interact with
all other particles inside the same urns, but particles belonging
to different urns do not interact. In addition, a jumping rate
(asymmetric in general) from one urn to another is introduced,
which is independent of the particle interaction. The system
can exhibit interesting phase transitions and the Poincaré cycle
and relaxation times can be calculated [23].

In this paper, we extend the interacting Ehrenfest model to
M urns (M > 2). In particular, we focus on the equilibrium
case when detailed balance can be achieved. A possible appli-
cation for the present equilibrium model and its generalization
is the optimization in partitioning problem [24,25], such as
distributing a fixed amount of total resource to M locations
with a certain cost to be minimized. The equilibrium phase
behavior of the model is rather rich and can be investigated in
detail. Analytic and exact results are derived for the conditions
of the emergence of coexistence of uniform or nonuniform
phases and the associated first-order phase transition and
energy barrier. Monte Carlo simulations are also performed
to verify our theoretical findings.

II. THE M-URNS MODEL WITH INTERACTIONS

The two-urn interacting model in Ref. [23] is extended
to the case of M urns. Similar to the two-urn case [23], N
particles are distributed into the M urns (M � 3 is considered
in this paper). Pairwise all-to-all interaction is introduced only
for particles in the same urn and particles in different urns do
not interact. Besides particle interactions, direct jumping rates
are further introduced between a pair of urns. In general, these
jump rates can be asymmetric (unbalanced) and the system is
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nonequilibrium with nonzero net particle fluxes. On the other
hand, if the particles in any urn are free to make transitions
back and forth with another urn with balanced jump rates
such that detailed balance is obeyed, the system can achieve
an equilibrium state. In this paper, we will focus on such an
equilibrium situation and the associated phase transition.

The energy or Hamiltonian of the interacting particles in
the urns are given by

βH = 1

2N

M∑
i=1

gini(ni − 1), (1)

where β ≡ 1/(kBT ) is the inverse temperature and gi is the
pairwise interaction (in unit of kBT ) of the particles inside
the ith urn. The urns can be thought of as arranged in some
periodic lattice, such as a one-dimensional ring, a completely
connected network, or in any undirected network such that
the jump rates between neighboring urns are balanced. Under
such conditions, with a suitable choice of transition dynamics,
such as the Metropolis rule, detailed balance is obeyed and the
system can achieve thermal equilibrium with the equilibrium
population distribution in the urns being Boltzmann, given by

ρeq(�n) ∝ N!∏M
i=1 ni!

e−βH ∝ N!∏M
i=1 ni!

e− 1
2N

∑M
i=1 gini (ni−1), (2)

where �n ≡ (n1, · · · , nM )ᵀ. The fraction of particles in the ith
urn is denoted by xi, with the constraint

∑M
i=1 xi = 1. In the

large N → ∞ limit, using Stirling approximation and with
the fraction xi ≡ ni

N , �x ≡ (x1, · · · , xM−1)ᵀ, and xM = 1 − x1 −
x2 − · · · − xM−1, one has

ρeq(�x) = N eN f (�x)√∏M
i=1 xi

, (3)

where

f (�x) = −
M−1∑
i=1

(
xi ln xi + gi

2
x2

i

)
−
(

1 −
M−1∑
i=1

xi

)

× ln

(
1 −

M−1∑
i=1

xi

)
− gM

2

(
1 −

M−1∑
i=1

xi

)2

(4)

and

N−1 ≡
∫
∑M−1

i=1 xi�1

M−1∏
i=1

dxi
eN f (�x)√∏M

i=1 xi

. (5)

The saddle point, �x∗, is obtained from ∂ f /∂xα|�x∗ = 0, α =
1, 2, · · · , M − 1, which leads to the saddle-point equations

x∗
i egix∗

i = the same constant, i = 1, 2, · · · , M (6)

M∑
i=1

x∗
i = 1, 0 < x∗

i < 1. (7)

Hereafter, unless otherwise stated, we shall consider the case
of identical pairwise interactions for all the urns, i.e., gi = g
for i = 1, 2, · · · , M.

A. Uniform and nonuniform equilibrium states

Since gi = g for every urn, the uniform solution of �x(0) ≡
( 1

M , · · · , 1
M )ᵀ is always a saddle-point solution of Eqs. (6). In

addition, M nonuniform saddle points (related by symmetry)
with different values for x∗

i can exist. Notice that the saddle
points are also the fixed points in the corresponding dynamical
system which describes the general nonequilibrium physics of
the system. Since the function xegx is monotonic increasing in
the domain 0 � x � 1 for g � −1, all x∗

i satisfying Eqs. (6)
can take one possible value and hence only the uniform state
is possible. On the other hand, the function has one peak in
0 � x � 1 for g < −1, thus each x∗

i [satisfying Eqs. (6) with
gi = g] can take one of the two possible values, allowing the
possibility of a nonuniform solution in Eqs. (6). Therefore, if
n urns have the fraction being one of the roots, say x, the other
M − n urns will take the fraction (1 − nx)/(M − n). Hence
one can derive an equation for the saddle point(s),

xegx = (1 − nx)

M − n
e

g(1−nx)
M−n , n = 0, 1, · · · , M − 1, (8)

which can also be written as

1

x
= n + (M − n)eg Mx−1

M−n . (9)

n = 0 represents uniform distribution (�x(0)) of particles in
which all M urns have the same fraction of 1/M. n corre-
sponds to the number of urns having the same fraction (say
x) and the other M − n urns having the same fraction of
a different value ( 1−nx

M−n ). Notice that x = 1/M is always a
solution in Eqs. (8). It is also easy to see that if x is the
root of Eqs. (8) for n = k � 1, then 1−kx

M−k is also a root for
n = M − k. Hence n and M − n have the same saddle points
and it is sufficient to consider k = 0, 1, · · · , �M

2 	 different
states, where k = 0 is the uniform state and the others k =
1, · · · , �M

2 	 are nonuniform states with different levels of
nonuniformity.

B. Saddle-node bifurcations for the nonuniform saddle points

Now consider first the simpler case of M = 3; take, for
example n = 2 in Eqs. (8) with the saddle point (x1, x2) =
(x, x), where x is given by the roots of

xegx = (1 − 2x)eg(1−2x). (10)

The stability of the saddle point is determined by the 2 × 2
Hessian matrix of f in Eq. (4):

f ′′ = −
(

2g + 1
x + 1

1−2x g + 1
1−2x

g + 1
1−2x 2g + 1

x + 1
1−2x

)
. (11)

The saddle point is stable if Trf ′′ < 0 and det f ′′ > 0, i.e., the
real part of the two eigenvalues of f ′′ are both negative. Using
Eq. (11), one can show that the uniform (x1, x2) = (1/3, 1/3)
saddle point is stable for g > −3. On the other hand, careful
examination reveals that x = 1

3 is always a root in Eq. (10)
and two smaller roots emerge in a pair (one stable and one
unstable) for some negative values of g < gc, characteristics
of a saddle-node bifurcation. At the bifurcation point, gc can
be determined by the condition of emergence of the pair of
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(stable and unstable) fixed point together with the condition

(xegx )′ = [(1 − 2x)eg(1−2x)]′. (12)

x can be eliminated from Eqs. (10) and (12), then gc is simply
given by the root of the following transcendental equation:

1 −
√

1 + 8

3g
= 2

(
1 +

√
1 + 8

3g

)

× exp

[
g

4

(
1 + 3

√
1 + 8

3g

)]
, (13)

which has only a single root of gc = −2.74564.... In fact, for
g < gc, three other stable saddle points related by symmetry
emerge in the x1-x2 phase plane. See Fig. 5 for the Monte
Carlo simulation results displaying ρeq(x1, x2) in the coex-
isting regime. Thus, a stable nonuniform equilibrium state
exists for g < gc, a stable uniform equilibrium state exists for
g > −3, and bistable coexisting equilibrium states of uniform
and nonuniform populations occur for −3 < g < gc.

For M urns, the condition of saddle-node bifurcation is
obtained by equating the slopes of the left- and right-hand
sides of Eqs. (8) and, using Eqs. (8), one can derive

1 + gx + nx

(
g

M − n
+ 1

1 − nx

)
= 0. (14)

Equations (8) and (14) will determine the critical value gc(n)
for the new fixed points to emerge via saddle-node bifurca-
tions. For n = 0, x = −1/g is the solution of Eq. (14) and

x = 1

2n

[
1 ±

√
1 + 4n(M − n)

gM

]
for n = 1, 2, · · · , M − 1.

(15)
The threshold values gc at which new fixed-point solutions
emerge can be obtained by substituting the solution for x in
Eq. (15) back to Eqs. (8) to give gc(n = 0) = −M and for n >

0, gc(n) is given by the root of the following transcendental
equation:

1 + sgn

(
M

2
− n

)√
1 + 4n(M − n)

gM
= n

M − n

(
1 − sgn

(
M

2
− n

))√
1 + 4n(M − n)

gM

× exp

[
g

M − n

(
1 − M

2n

(
1 + sgn

(
M

2
− n

)√
1 + 4n(M − n)

gM

))]
, (16)

where

sgn(x) ≡ 1 for x � 0,−1 for x < 0. (17)

Notice that n = k and n = M − k (k � 1) have the same gc

and hence the (nonuniform) fixed points emerge together via
saddle-node bifurcation. Furthermore, for n = M/2 (i.e., even
M), the only solution to Eqs. (8) and (14) is gc = −M and x =
1/M, and hence there is no nonuniform fixed point emerging
due to saddle-node bifurcation. This special nonuniform fixed
point emerges at gc = −M via pitchfork bifurcation for even
M, but careful examination of the Hessian matrix Eq. (21)
reveals that this saddle point is unstable. Thus, the number of
distinct gc’s is �M

2 	, and the number of distinct nonuniform
phases (only 1 stable and the rest are unstable, as shown
below) is M − 1.

C. Stability for the saddle points

The stability condition of the saddle point �x∗ is determined
by the (M − 1) × (M − 1) Hessian matrix (f ′′)αβ ≡ ∂2 f

∂xα∂xβ
|�x∗ .

Direct calculations give

∂2 f

∂xα∂xβ

∣∣∣∣
�x∗

= −
(

1

xM
+ g

)
−
(

1

xα

+ g

)
δαβ,

xM ≡ 1 − x1 − x2 − · · · , xM−1. (18)

For the uniform saddle point �x(0) ≡ ( 1
M , · · · , 1

M )ᵀ,

∂2 f

∂xα∂xβ

∣∣∣∣
�x(0)

= −(M + g)(1 + δαβ ), (19)

whose eigenvalues are −M(g + M ) and −(g + M ) (with
(M − 2) degeneracy). Thus the uniform phase becomes unsta-
ble for g < −M, i.e., when the interparticle attraction is strong
enough, the uniform phase becomes unstable.

For the first nonuniform saddle point �x(1) ≡ (y, · · · , y)ᵀ,
y �= 1

M and y is the root of Eqs. (8) with n = M − 1 or n = 1,
we have from Eqs. (18)

∂2 f

∂xα∂xβ

∣∣∣∣
�x(1)

= −
(

1

1 − (M − 1)y
+ g

)
−
(

1

y
+ g

)
δαβ,

(20)

whose eigenvalues are −(Mg + 1
y[1−(M−1)y] ), and −(g + 1

y )
[with (M − 2) degeneracy].

In the case of even M, the nonuniform saddle point �x( M
2 ) ≡

(y, · · · , y, 2
M − y, · · · , 2

M − y) exists, where y is the root in
Eqs. (8) with n = M

2 , the Hessian matrix is

∂2 f

∂xα∂xβ

∣∣∣∣
�x( M

2 )
=

⎧⎪⎨
⎪⎩

−
(

M
2−My + g

)
−
(

1
y + g

)
δαβ if α, β � M

2

−
(

M
2−My + g

)
(1 + δαβ ) otherwise.

(21)

The eigenvalues of Eq. (21) are −( M
2−My + g)

[with ( M
2 − 2) degeneracy], −(g + 1

y ) [with ( M
2 −

1) degeneracy], and − 1
2 [M( M

2−My + g) + g + 1
y ±√

M(M − 2)( M
2−My + g)2 + ( 1

y + g)2].
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FIG. 1. The eigenvalues as a function of g in a M = 5 system for (a) the first nonuniform state (solid curve with degeneracy M − 2 and
a nondegenerate one denoted by the dashed curve). (b) The second (k = 2) nonuniform state (solid curve with degeneracy M − 3 and two
nondegenerate ones with dashed and dotted curves). The two different colors (brown with symbols and blue without symbol) denote the two
nonuniform saddle points x+ and x−, respectively. The value of gc is marked by a vertical dot-dashed line, and the horizontal dotted line marks
the zero value.

The kth (k � 1) nonuniform saddle point can be obtained
by putting n = M − k in the saddle point Eq. (9). Apart
from the uniform saddle point, there are, in general, two
nonuniform roots from Eq. (9), except for k = M

2 (even M)
in which there is only 1 nonuniform root. The eigenvalues of
the nonuniform saddlepoints can be evaluated as a function
of g to reveal the stability of the nonuniform phases (see
Appendix for detail calculations). Careful examination of the
eigenvalues indicated that only one of the first nonuniform
phases is stable and all other nonuniform (k > 1) phases
always have at least one eigenvalue with a positive real
part. Figure 1 illustrates the results of eigenvalues for the
first two nonuniform phases for the case of M = 5. Only
one of the first nonuniform phases has all its eigenvalues
negative for all ranges of g, as depicted in Fig. 1(a) for the
case of M = 5. For the second nonuniform phase, there is
always a positive eigenvalue for both saddle points in the
relevant range of g and hence is an unstable nonuniform
phase [see Fig. 1(b)]. It should be noted that one can also
employ a dynamical model of the form d�x

dt = �A(�x), whose
fixed points are identical with the saddle point of f (�x). And
the stability of the fixed points deduced from the Jacobian
matrix ∂ �A

∂�x |�x∗ is the same as obtained from the Hessian matrix
∂2 f

∂xα∂xβ
|�x∗ .

III. FIRST-ORDER PHASE TRANSITION BETWEEN
UNIFORM AND FIRST NONUNIFORM STATES

For equilibrium transition between the coexisting uniform
and first nonuniform states as g varies, it is convenient to
project onto some line in the phase space and consider the pro-
jected equilibrium distribution function ρ̂eq(x) parametrized
by a single variable x. For instance, with M = 3, one can

define

ρ̂eq(x1) =
∫

ρeq(x1, x2)δ(x2 − x1)dx2 ∝ eN f (x1,x1 )

√
x1(1 − 2x1)

,

(22)
which has two maxima at 1/3 and x̃ < 1/3. A first-order
transition occurs at g = gt , which is given by

∂

∂x

(
eN f (x,x)

√
x(1 − 2x)

)∣∣∣∣
x̃

= 0 (23)

eN f ( 1
3 , 1

3 )

1
3

√
1
3

= eN f (x̃,x̃)

√
x̃(1 − 2x̃)

. (24)

For N → ∞, one can solve to get x̃ = 1
6 and

gt = −4 ln 2 = −2.77259... (25)

At g = gt , ρ̂eq(x) has a local minima at x = 1
4 which in turn

gives the energy barrier at the transition, Eb
N = ln 3 − 19

12 ln 2 =
0.00112925...

In general, for M urns, a first-order transition occurs at g =
gt , which is given by

eN f (�̃x)√
x̃M−1[1 − (M − 1)x̃]

= eN f (�x(0) )√
1

MM

, (26)

∂

∂x

(
eN f (�x)√

xM−1[1 − (M − 1)x]

)∣∣∣∣∣
x̃

= 0 x̃ �= 1

M
. (27)

For N → ∞, one can solve the above equations to get

x̃ = 1

M(M − 1)
, (28)

gt = −2(M − 1)

M − 2
ln(M − 1). (29)
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FIG. 2. (a) The threshold gt for first-order transitions between 0 ↔ 1 (solid curve) and the critical value of g at which the locally stable
first nonuniform phase emerges, gc(n = 1) (dashed curve), plotted as a function of M. The dotted line denotes g = −M at which the uniform
phase becomes unstable. (b) Energy barrier Eb/N vs M for the first-order transitions in (a).

At g = gt , one can define ρ̂eq(x) ≡ ρeq(x, · · · , x) to character-
ize the energy barrier. ρ̂eq(x) has a local minima at x = 1

2(M−1) ,
which in turn gives the energy barrier at the transition:

Eb

N
= ln

M

2
− 3M − 2

4M
ln(M − 1). (30)

Figure 2(a) plots the first-order transition threshold as a func-
tion of M, together with gc at which the first nonuniform phase
emerges. The characteristic energy barrier at the first-order
transition as a function of M is shown in Fig. 2(b).

IV. EQUILIBRIUM PHASE DIAGRAM

As the interparticle attraction becomes stronger (g becomes
more negative), the system undergoes a first-order transition
from the uniform phase with the emergence of coexisting
a locally stable nonuniform phase at g = gc(n = 1). As g
becomes more negative, various other nonuniform phases
emerge, albeit not locally stable. As g decreases to g = −M,
the uniform phase becomes unstable and only the stable
first nonuniform phase remains. Figure 3 displays the phase
diagrams for odd (M = 7) and even (M = 8) values of M.
The values of gc’s at which various nonuniform phases emerge
are calculated analytically. The first-order transition point gt

as given by Eq. (29) is also shown.

V. MONTE CARLO SIMULATIONS

To explicitly verify the theoretical results in previous sec-
tions, we carry out Monte Carlo simulations for the M urns
system. In the simulation, a total of N (N is an integer multiple
of M) particles are in the system consisting of M urns and
the population of the i urn is denoted by ni. The transition
probability that a particle from the ith urn jumps to the jth
urn is

Ti→ j = 1

1 + e− g
N (ni−n j−1)

. (31)

It is easy to see that detailed balance is obeyed with the above
transition probability and equilibrium will be achieved after
sufficient Monte Carlo steps.

In principle, since we are interested in the equilibrium
properties, the urns can be placed on any bidirectional network
with balanced jump rates between all connected pairs of

-9 -8 -7 -6 -5 -4 -3
g

(a)

(b)

000
11

2
3

1
2

0
1
0

2
3

-9 -8 -7 -6 -5 -4 -3
g

0000
1111

4

222
33

0

FIG. 3. Phase diagrams for (a) M = 7 and (b) M = 8 showing
various phases. Uniform state is denoted by 0 and various nonuni-
form states of different degree of nonuniformity are denoted by 1,
2,..., with decreasing nonuniformity. A state with a locally stable
phase is labeled with a bold font. The most nonuniform (k = 1) state
always has a stable phase. The thermal first-order phase transition
that occurs at gt is marked by an arrow.
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FIG. 4. Monte Carlo simulation results of the urn model for at equilibrium. (a) Three-urn system with N = 3000. The mean population
and its fluctuation of one of the urns vs g. The urn with lowest population in the nonuniform state is chosen. Solid curve is the theoretical
value of the mean population which is obtained from the smallest root of the saddle-point Eq. (9). The theoretical first-order transition point
is marked by a vertical dotted line. The uniform state with population fraction of 1

3 is marked by a horizontal dot-dashed line. 105 MCS/N
are used in the sampling. (b) The mean nonuniformity as a function of g in (a). The theoretical nonuniformity of the first nonuniform state
given by Eq. (A5) is also shown (solid curve). The vertical dashed line marks the theoretical value at which the nonuniform (metastable) state
emerges. (c) Four-urn system with N = 1000. The mean populations of the urns vs g. The theoretical first-order transition point is marked by a
vertical dotted line. The uniform state with population fraction of 1

4 is marked by a horizontal dot-dashed line. 2 × 105 MCS/N are used in the
sampling. (d) The mean nonuniformity as a function of g in (c). The theoretical nonuniformity of the first nonuniform state given by Eq. (A5)
is also shown (solid curve). The vertical dashed line marks the theoretical value at which the nonuniform (metastable) state emerges.

urns and particle transition rules made to satisfy the detailed
balance condition such that there is vanishing net particle flux
between every connected pair of urns.

A particle is chosen at random out of all the particles in
the M urns (say the ith urn is chosen) and a transition jump
is made according to the probability given in Eq. (31). In
practice, for the purpose of investigating equilibrium prop-
erties, we put the M urns on a one-dimensional ring for
simplicity. For urns on a one-dimensional ring, the possible
transitions are j = i ± 1 with equal jump rate to the left and
right urns. After some long transient time for equilibration, the
populations in each urn or the fraction xi(t ) is recorded for a
long sampling time. Time is in Monte Carlo steps per particle
(MCS/N). One MCS/N means that on average every particle
has attempted a jump.

To quantify how nonuniform the state is, we define

ψ =
√√√√ 1

M(M − 1)

∑
i �= j

(xi − x j )2 (32)

as the nonuniformity of the state. ψ can also serve as an
order parameter for the phase transition: ψ � 0 for the uni-
form (disordered) state and ψ > 0 for the nonuniform (order)
state. ψ can be calculated for states of different degrees of
nonuniformity (labeled by k) as given by Eq. (A5). One can
see that from Eq. (A5) that ψ decreases monotonically with k
and thus k = 1 is the most nonuniform phase.

Monte Carlo simulations for the three-urn and four-urn
systems as a function of g were carried out results are shown
in Fig. 4. Figure 4(a) shows the mean population fraction
(x1) of one of the three urns drops from the uniform value
of 1

3 to a smaller value as the interparticle attraction increases.
The fluctuation of the population fraction, measured by the
variance of x1, also shows a peak across the expected first-
order transition point. The mean nonuniformity of the system
〈ψ〉 also increases as g decreases across the transition. The
analytical nonuniformity of the first nonuniform state ψ (1) is
also shown [see Fig. 4(b)]. For interparticle attraction stronger
than |gc| (marked by vertical dashed line), the first nonuniform
phase emerges, coexisting with the uniform state. Figure 4(c)
shows the mean population fractions of all the urns as a
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FIG. 5. Monte Carlo simulation results for the population distribution map of the three-urn model with N = 3000 at equilibrium. (a) g =
−2.7 in the uniform state. (b) g = −2.75 and (c) g = −2.8 in the coexisting regime. (d) g = −3.1 in the nonuniform state. The uniform phase
of xi = 1

3 is denoted by the yellow filled circle and the nonuniform phase is denoted by filled triangles.

function of g for the four-urn system at equilibrium. For low
attractive strengths, the urns are equally populated with 〈xi〉 �
1
4 . As the interparticle attraction increases across the predicted
first-order transition point [gt = −3 ln 3 = −3.29584 from
Eq. (29)], the populations become inhomogeneous when one
urn is more populated and the other three are less but equally
populated. The mean nonuniformity of the system 〈ψ〉 also
shows a sharp rise as shown in Fig. 4(d).

For M = 3, there are only two independent variables x1

and x2 and the population distribution can be visualized
in the two-dimensional density maps shown in Fig. 5. For
g > gc the population map has a single peak at the uni-
form state [Fig. 5(a)], and the nonuniform state emerges and
coexist as g � gc [Fig. 5(b)]. As the interparticle attraction
becomes stronger (gt < g < gc), the nonuniform population
become more significant [Fig. 5(c)]. Finally, at g < gt , the
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FIG. 6. Monte Carlo simulation results for the time course of the populations in the three-urn model at equilibrium. N = 3000. The
horizontal dashed line is the uniform state of xi = 1

3 . Black (darker) curve shows x1 and (grey) curve shows x2. (a) g = −2.75 (b) g = −2.8 in
the coexisting regime. Time in Monte Carlo Steps per particle (MCS/N). (c) P(xi ) for the case in (a). 106 MCS/N are used. (d) P(xi ) for the
case in (b). 108 MCS/N are used to obtain good statistics.

uniform state vanishes and only the nonuniform phase re-
mains [Fig. 5(d)].

The time courses of the population fractions of the three-
urn system above and below the first-order transitions are
shown in Figs. 6(a) and 6(b), respectively. For g � gt , the
system spends most of the time around the uniform state
with occasion hopping to the nonuniform metastable phases
[Fig. 6(a)]. On the other hand, for −3 < g < gt , the system
is predominantly in the nonuniform phase but can hop be-
tween the degenerate permutation nonuniform phases in long
timescales [Fig. 6(b)]. The coexistence of the uniform and
nonuniform phases is explicitly spelled out in the distribution
functions of each urn. As shown in Fig. 6(c), the system is
dominated by the uniform phase with a prominent peak at
xi = 1

3 but the two local peaks from the nonuniform phases
are clearly seen. For g < gt , the two peaks of the nonuniform
phases grow at the expense of the uniform peak, as shown in
Fig. 6(d).

VI. SUMMARY AND OUTLOOK

In this paper, the equilibrium properties of the Ehrenfest
M-urn model with interparticle attractions within the same
urn is investigated. It is shown that phases of different levels
of population nonuniformity can exist, but only the uniform
and the most nonuniform phases are locally stable. In addi-
tion, these two phases can coexist in a range of attraction
strengths whose values can be calculated analytically. These

two phases are also connected by a first-order transition whose
transition interaction strength [Eq. (29)] and energy barrier
[Eq. (30)] can be derived explicitly for arbitrary values of M.
For weak |g|, the system is in the symmetric (uniform) phase
with the same mean population xi = 1/M, and for strong
|g|, the system is the asymmetric phase, and the only stable
asymmetric phase is the (k = 1) most nonuniform state. This
first-order phase transition is associated with the breaking of
ZM symmetry as |g| is increased.

The theoretical findings are further verified by Monte Carlo
simulations and the agreement is excellent. It is remarkable
that as the interparticle attraction increases, the population
changes from the entirely uniform state (in which entropy
effects dominates) to the case with the emergence of the
locally stable most nonuniform k = 1 state (in which energy
dominates), rather than emerging with a less (or least) nonuni-
form state. And when the attraction is increased further, less
nonuniform states (k > 1) can emerge, but they are all proved
to be unstable. As a result, the most nonuniform state persists
and remains stable for g < gc(n = 1) due to the domination
of the all-to-all interparticle attractions within the urn over the
entropy effects. These analytical results and physical picture
can enhance our fundamental understanding of equilibrium
phase transitions with multiphase coexistence.

The present model can be extended to the case in which
the particles can possess internal energy levels. For instance,
suppose that the energy spacing of the energy levels at each
urn are the same, with the lowest one being zero. Now
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consider the coupling constant to be negative so the particles
interaction is attractive. When the temperature is lowered to
zero, g approaches to −∞. In this case, inside an urn, the
occupation will be dominated by its lowest energy-level state.
Because of mutual attraction between particles in the same
urn, the total number of particles will be located at the lowest
energy level of a specific urn. Hence, if one generalizes the
classical particles to Bosons, also assuming the weak coupling
regime and the transition between different urns is classical
(no coherence between different urns), then it could possibly
lead to Bose condensation in a specific urn.

Here we focused on the equilibrium behavior in which
detailed balance is obeyed. But by allowing the jump rates
between a pair of urns to be unbalanced, for instance in a one-
dimensional ring, the clockwise and anticlockwise jump rates
are p and q, respectively, with p > q, then a nonequilibrium
state with a net clockwise flux results. With the particle
interaction explicitly imposed in the model, the interplay of
energy and entropy can lead to interesting equilibrium and
nonequilibrium phase transitions. For example, although the
less nonuniform states are found to be unstable, it may be
plausible to stabilize them if the interurn interactions are
introduced in a proper way. On the other hand, our model
can also be extended to other nonequilibrium cases, such
as by allowing the particles in the urns be active particles
modeled by noise with nontrivial correlations or the particles
are subjected to noises with nontrivial spectrum, then it may
lead to additional contributions that could affect the breaking
of the ergodicity [26,27] in the broken-symmetry nonuniform
states. These systems are intrinsically nonequilibrium in na-
ture, which is beyond the scope of the present study, but can
be investigated in future.

Finally, we emphasize that the M urn with the interaction
model can serve as a new paradigm model to study various
nontrivial equilibrium and nonequilibrium statistical mechan-
ics in a more analytically tractable way, including nonequilib-
rium steady states or even far from equilibrium situations such
as oscillations and even complex spatial-temporal patterns.
These are under our current investigations and the results will
be presented in future publications.
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APPENDIX: STABILITY CALCULATIONS FOR THE
NONUNIFORM PHASES

In this Appendix, we give more details on the definitions
of the nonuniform phases and derive their stability conditions.
The possible phases are given by the roots of x in the saddle
point Eqs. (8). As discussed in Sec. II A, the function xegx

can have at most two distinct values for 0 � x � 1, thus at
equilibrium the population fractions can only take at most two
possible values for a given value of g. Hence we define the kth
phase as the particle distributions such that there are k urns
with the same occupation fraction, say y, and the rest (M − k)
of the urns have the same population fraction, say x. Thus it

follows that the kth and phases are the same and it suffices to
consider k = 0, 1, · · · , �M

2 	 possible phases. In general, x �=
y and k �= 0 for the nonuniform phases, otherwise a uniform
phase results. It would be more intuitive to rewrite Eqs. (8) as

xegx = yegy, (A1)

x = 1 − (M − k)y

k
, (A2)

where the relation between x and y in Eq. (A2) simply follows
from the requirement that the sum of all population fractions
must be unity. Since the system possesses permutation sym-
metry of the M identical urns, one has the freedom to choose
the independent coordinates x1, x2, · · · , xM−1, i.e., freedom to
label the urns using distinct labels. For actual calculations, we
need to choose a convenient labeling. For instance, one can
choose the kth phase as given by the M − 1 component vector,

�x(k) = (y, · · · , y, x · · · , x)ᵀ 1 � k �
⌊

M

2

⌋
, (A3)

whose first M − k components have the same value y (but y �=
1
M ) and the rest of the k − 1 components have the same value

of x = 1−(M−k)y
k . The value of y can be solved by substituting

Eq. (A2) into Eq. (A1) to give

ky = [1 − (M − k)y]e
g
k (1−My). (A4)

The nonuniformity of the kth phase can be computed from
Eq. (32) to be

ψ (k) =
√

2

M(M − 1)
(
M

k
− 1)|1 − My|. (A5)

In the strong attraction limit, g → −∞, Eq. (A4) gives

y � e−|g|/k

k → 0 and ψ (k)(g → −∞) �
√

2
M(M−1) ( M

k − 1)(1 −
M
k e−|g|/k ) →

√
2

M(M−1) ( M
k − 1), which is a decreasing func-

tion in k. Thus the first nonuniform phase (k = 1) is the most
nonuniform state.

Apart from the uniform saddle point 1
M , there are in general

two nonuniform roots of y from Eq. (A4). More insight can be
gained by examining the x-y plane unit square (see Fig. 7)
in which the intersection of the curve Eq. (A1) and the line
Eq. (A2) gives the roots for the saddle points. Consider the
case of x �= y and k �= 0 (nonuniform phases) and g < −1, it
can be shown [28] that the curve Eq. (A1) always lies outside
the square boxes [0,− 1

g ] × [0,− 1
g ] and [− 1

g , 1] × [− 1
g , 1],

and hence the saddle point must satisfy the condition that one
of the x or y is > − 1

g (but not both), and the other one is < − 1
g .

1. Instability for the k � 2 phases

Here we compute the eigenvalues of Hessian matrix at the
kth nonuniform saddle-point which is given by the root of
the saddle-point equation (9). The stability condition of the
kth phase is determined by the (M − 1) × (M − 1) Hessian
matrix from Eqs. (18) and can be computed by choosing
saddle-point �x(k) as in Eq. (A3) to give

∂2 f

∂xα∂xβ

∣∣∣∣
�x(k)

= −
[

1

x
+ g

]
−
[

1

y
+ g

]
δαβ, (A6)
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FIG. 7. Plots of the curve Eq. (A1) (for x �= y) and the line
Eq. (A2). The two intersections at x = x+ and x = x− are indicated
by filled and open circles, respectively. The x = − 1

g and y = − 1
g

are indicated by dot-dashed lines. The x = y line is indicated by the
dotted line.

whose eigenvalues can be solved [29] to give (for 2 � k �
�M

2 	)

λB ≡ −
(

1

y
+ g

)
[with (M − k − 1) degeneracy], (A7)

λA ≡ −
(

1

x
+ g

)
[with (k − 2) degeneracy], (A8)

1

2
{MλA + λB ±

√
(MλA + λB)2 − 4λA[(M − k)λA + kλB]}.

(A9)

These eigenvalues depend on the roots x and y which in turns
depend on g. Now it is easy to see for k � 3, since one of the
x or y is > − 1

g and hence either λA or λB is positive, thus
rendering these phases to be always unstable. λA is absent
for k = 2, but we can choose another convenient coordinate
such as

�x(k) = (x, x, y, · · · , y)ᵀ (A10)

and one can compute directly to see that both λA and λB are
eigenvalues and hence the k = 2 phases are also unstable.

2. Stability and instability for the k = 1 phases

For k = 1, it is convenient to choose the coordinate such
that

�x(1) = (y, · · · , y)ᵀ (A11)

and x = 1 − (M − 1)y. One can compute directly to find
the eigenvalues to be λB [with (M − 2) degeneracy] and
	 ≡ (M − 1)λA + λB = −Mg − M−1

x(1−x) , where λA and λB are
given as in Eqs. (A8) and (A7). For g < gc(n = 1) ≡ gc, two
k = 1 phases emerge with the corresponding roots x+ and
x− via saddle-node bifurcation, which occurs at x = xc. As
g is further decreased, x+ keeps increasing while x− keeps
decreasing. As discussed in previous subsection, λB > 0 if the
root x < − 1

g and λB < 0 if x > − 1
g . Since the stability also

depends on the sign of 	, we first find out the conditions that
	 = 0. Vanishing 	 occurs for x satisfying x = 1−x

M−1 e− 1−Mx
Mx(1−x) .

Careful examination of the roots of this equation reveals that
there are two roots at x = xc (the saddle-node bifurcation point
at g = gc) and at x = x− = 1

M (which occurs at g = −M). The
eigenvalues λB and 	 evaluated at x+ and x− determine the
stability of these two phases, which are considered for
the following two regimes in g.

a. −M � g < gc

We first consider the case of weaker interparticle attrac-
tion −M � g < gc. The condition for saddle-node bifurcation
gives the relation between gc and xc: M − 1 = −gcMxc(1 −
xc), which in turn shows the eigenvalue 	|xc = 0 at the
saddle-node bifurcation point. For g < gc, two roots x+ > xc

and x− < xc emerge, and we will show the corresponding
eigenvalues 	|x+ < 0 	|x− > 0 in this regime of g. As g
becomes more and more negative, x− decreases and at g =
−M, x− = 1

M , and the corresponding eigenvalue 	 = 0. Since
	|x− = 0 occurs only at g = gc and g = −M, thus 	|x− does
not change signs in the −M � g < gc region. Similarly, 	|x+
will not change sign in the g < gc region.

We now use perturbation to show that for g � gc, 	|x+ <

0 and 	|x− > 0. With g = gc − ε and writing x � xc + δ,
expanding the saddle-point equation to leading order in ε

gives δ2 = 2x2
c (1−xc )2(Mxc−1)
(M−1)(2xc−1) ε. Thus we have

	|x± = ∓ 2xc − 1

x2
c (1 − xc)2

(x± − xc), (A12)

and hence 	|x+ < 0 and 	|x− > 0 once the saddle-node bi-
furcation occurs. Since 	|x− does not change signs in the
regime of g, x− is unstable. For x+, 	|x+ also does not change
signs and remains <0, also the other eigenvalue λB < 0 (since
x+ > − 1

g and y+ < 1
g ), thus it is stable.

b. g < −M

In this case, x− < − 1
g and its eigenvalue λB > 0 and this

phase is unstable. On the other hand, x+ remains > − 1
g and

both of its eigenvalues λB < 0 and 	|x+ < 0, ensuring that
this is a stable phase.
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