
Citation: Hsueh, C.-H.; Cheng, C.-H.;

Horng, T.-L.; Wu, W.-C. H-Theorem

in an Isolated Quantum Harmonic

Oscillator. Entropy 2022, 24, 1163.

https://doi.org/10.3390/e24081163

Academic Editor: Víctor

Romero-Rochín

Received: 26 July 2022

Accepted: 15 August 2022

Published: 20 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

H-Theorem in an Isolated Quantum Harmonic Oscillator
Che-Hsiu Hsueh 1,2, Chi-Ho Cheng 3 , Tzyy-Leng Horng 4,* and Wen-Chin Wu 2,*

1 Department of Optoelectric Physics, Chinese Culture University, Taipei 111, Taiwan; chhsueh7@gmail.com
2 Department of Physics, National Taiwan Normal University, Taipei 106, Taiwan
3 Department of Physics, National Changhua University of Education, Changhua 500, Taiwan;

phcch@cc.ncue.edu.tw
4 Department of Applied Mathematics, Feng Chia University, Taichung 407, Taiwan
* Correspondence: tlhorng@fcu.edu.tw (T.-L.H.); wu@ntnu.edu.tw (W.-C.W.)

Abstract: We consider the H-theorem in an isolated quantum harmonic oscillator through the
time-dependent Schrödinger equation. The effect of potential in producing entropy is investigated
in detail, and we found that including a barrier potential into a harmonic trap would lead to
the thermalization of the system, while a harmonic trap alone would not thermalize the system.
During thermalization, Shannon entropy increases, which shows that a microscopic quantum system
still obeys the macroscopic thermodynamics law. Meanwhile, initial coherent mechanical energy
transforms to incoherent thermal energy during thermalization, which exhibiting the decoherence of
an oscillating wave packet featured by a large decreasing of autocorrelation length. When reaching
thermal equilibrium, the wave packet comes to a halt, with the density distributions both in position
and momentum spaces well-fitted by a microcanonical ensemble of statistical mechanics.

Keywords: quantum harmonic oscillator; H-theorem; thermalization; Shannon entropy; barrier
potential; decoherence

1. Introduction

H-theorem plays an important role in the time evolution of system in both the classical
and quantum statistical mechanics. In particular, it identifies the entropy function appear-
ing in the second law of thermodynamics. It is a longstanding question on the microscopic
description of the second law of thermodynamics. One fundamental issue is whether an iso-
lated system can reach thermal equilibrium, i.e., the state with maximum entropy [1–8]. In
isolated quantum systems, it is especially important to see how the reversible microscopic
quantum mechanics conceals the irreversible macroscopic phenomena of thermodynamics.
Therefore, a directional time evolution of isolated quantum systems at nonequilibrium
would often reveal the thermalization process concealed in quantum mechanics. Fortu-
nately, ultracold quantum gases, which are pure and controllable, provide an excellent
platform to study the nonequilibrium dynamics for isolated quantum systems. In atomic
Bose–Einstein condensate (BEC) experiments, Kinoshita et al. [9] showed no evidence of
thermalization by pairwise collision, from the Tonks–Girardeau limit to the intermediate
coupling regime. Nevertheless, the dissipative motion of oscillating BEC in a disorder trap,
first studied by Dries et al. [10] and further investigated by Hsueh et al. [11], does manifest
the thermalization of an isolated quantum system. In particular, the noninteracting-limit
case has been numerically studied in [12], which depicts Shannon entropy increasing to
its maximum during thermalization, and at equilibrium, the initial mechanical energy is
transformed to the thermal energy consisting of evenly distributed kinetic and potential
energies.

In equilibrium statistical mechanics, one primary task is to determine the distribution
function. Owing to the dependence of interaction, exact distribution function of a many-
body system is usually not accessible. In nonequilibrium statistical mechanics, in contrast,
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the most difficult task is to determine the governing factors that describe the thermalization.
It will be shown that the issue is not related to whether there is another new law describing
the thermalization, but on how the governing microscopic laws can properly describe it
and at the same time obey macroscopic thermodynamic laws. In this paper, we try to
answer these two questions by studying an isolated quantum harmonic oscillator (QHO)
that thermalizes through a single barrier. The disorder trap used for thermalization in [12]
is constituted by a harmonic trap superposed with a Gaussian correlated disorder potential,
which consists of many bumps in various sizes. Here, we demonstrate that a harmonic
trap superposed with a single bump barrier alone can thermalize QHO as well through
wave scattering. In addition, in [12], thermalization starts from a mobilized ground state of
harmonic trap, while in this paper, besides a ground state of harmonic trap, we additionally
employed a mixture of two pure states (such as ground and first excited states) of harmonic
trap as the initial condition in order to exhibit different entropy evolution behaviors during
thermalization. Moreover, here we presented a rigorous theoretical derivation of entropy
production that shows that additional barrier potential can cause the increasing of entropy
and leading to thermalization, while harmonic trap alone would not.

To be more specific, we studied this thermalization process by the time evolution of
density distribution, for which we have numerically solved the time-dependent Schrödinger
equation (TDSE), Equation (8), with initial condition, Equation (17), with h̄ω and the har-
monic trapping length l =

√
h̄/mω taken as the units of energy and length. To numerically

integrate Equation (8), we use the method of lines with spatial discretization by a Fourier
pseudospectral method and time integration by an RK45 scheme [13].

In this study, we will show that, after being released from the proposed initial coherent
state with an excessive potential energy by placing the wave packet away from the center
of trap initially, the wave packet would oscillate in this trap, wave-scattered by the single
bump barrier located in the center of trap, and at the same time gradually transform the
initial excessive potential energy into incoherent thermal energy. The whole phenomenon is
analogous to a classical damped harmonic oscillator with the single bump barrier acting as
the friction. When evolution time is long enough (t� tth with tth being the thermalization
time), the system approaches the equilibrium. During the relaxation to its equilibrium, we
found that an exchange between kinetic energy and potential energy continues to happen
but with diminishing flux. In addition, we observed that the thermalization process of such
a microscopic quantum system would still obey the second law of thermodynamics by the
examination of increasing Shannon entropy. When equilibrium is reached, the oscillation
stops, kinetic-potential energy exchange comes to a halt, Shannon entropy reaches its
maximum, and the initial excessive potential energy is totally dissipated into incoherent
thermal energy.

The paper is organized as follows: in Section 2, Shannon entropy in momentum space
is adopted here to describe the thermalization of the current isolated quantum system, and
an entropy production equation in momentum space is derived to analyze the effect of
external potential. In Section 3, we found that harmonic trap alone will not generate any
entropy, but with a barrier potential; in addition, entropy can then be produced, which
means that the recruitment of a barrier potential into the harmonic trap would cause
thermalization. In addition, the entropy production during thermalization is accompanied
by a decoherence of wave packet featured by a large decreasing of autocorrelation length.
In Section 4, when reaching thermal equilibrium eventually, we show that the density
distributions both in position and momentum spaces are well fitted by a microcanonical
ensemble of statistical mechanics. In Section 5, we study the time evolution of energy
and investigate how different, from a pure QHO kinetic and potential, energies exchange
with each other during thermalization, which describes how a coherent mechanical energy
transforms to an incoherent thermal energy. Finally, we present the conclusions in Section 6.
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2. Model and Methods

In quantum statistics, one often follows the von Neumann entropy:

Sv(t) = −kBTr[ρ̂(t) ln ρ̂(t)], (1)

with ρ̂ being the density operator. The production rate of Sv is then

dSv(t)
dt

= −kBTr
[

∂ρ̂(t)
∂t

ln ρ̂(t) +
∂ρ̂(t)

∂t

]
. (2)

The second term in Equation (2) vanishes due to the normalization of the total number
of states. It is a general concept that Sv(t) as well as dSv(t)/dt are basis independent. In
terms of an arbitrary basis |i〉,

dSv(t)
dt

= −kB ∑
i,j
〈i|∂ρ̂

∂t
|j〉〈j| ln ρ̂|i〉. (3)

However, if the basis |i〉 is chosen to be eigenkets of ρ̂ or energy eigenkets, then

dSv(t)
dt

= −kB ∑
i,j
〈i|∂ρ̂

∂t
|j〉〈j| ln ρ̂|i〉 = ikB

h̄ ∑
i,j
〈i|[Ĥ, ρ̂]|j〉〈j| ln ρ̂|i〉 = 0. (4)

Here, Ĥ is the Hamiltonian. The vanishing of dSv(t)/dt in Equation (4) indicates
that von Neumann entropy can not offer any entropy production for an isolated quantum
system going through thermalization [14,15].

Alternatively, one can consider the Shannon entropy (SQ) whose production rate is
defined as [16–18]

dSQ(t)
dt

= −kB ∑
i
〈i|∂ρ̂

∂t
|i〉 ln〈i|ρ̂|i〉 = ikB

h̄ ∑
i
〈i|[Ĥ, ρ̂]|i〉〈i| ln ρ̂|i〉, (5)

where the basis |i〉 is the eigenkets of operator Q̂, which is arbitrary except for using the
eigenkets of either ρ̂ or Ĥ. In addition, the basis |i〉 is not suitable to be chosen as the
eigenkets of other complete sets of commuting observables (CSCO). In general, position
x̂ and momentum p̂ are suitable choices of Q̂ since they are not both CSCO. When the
basis |i〉 is chosen to be momentum eigenkets, the corresponding Shannon entropy and its
production rate are

Sp(t) = −
kB

2π

∫ ∞

−∞
ρkk(t) ln

[
ρkk(t)
2πl

]
dk, (6)

and
dSp(t)

dt
= − kB

2π

∫ ∞

−∞

∂ρkk(t)
∂t

ln
[

ρkk(t)
2πl

]
dk, (7)

where ρkk ≡ |ψ̃(k, t)|2 is the momentum distribution with ψ̃(k, t) = 〈k|ψ(t)〉.
In this paper, we focus on a one-dimensional quantum harmonic oscillator, ini-

tially released from an off-center position, that corresponds to an out-of-equilibrium
state [10,19–21]. The system is well described by the time-dependent Schrödinger equa-
tion (TDSE)

ih̄
∂ψ(x, t)

∂t
=

[
− h̄2

2m
∂2

∂x2 + V(x)

]
ψ(x, t), (8)

where m is the particle mass, and the external potential is V(x) = V0(x) + V1(x) consisting
of a confining harmonic well V0(x) = mω2x2/2 with ω the trapping frequency and a
barrier potential V1(x) described later.
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The real-space TDSE, Equation (8), can be Fourier transformed to momentum space,

ih̄
∂ψ̃(k, t)

∂t
=

h̄2k2

2m
ψ̃(k, t) +

1
2π

∫ ∞

−∞
Ṽ(k− k1)ψ̃(k1, t)dk1, (9)

where ψ̃(k, t) and Ṽ(k) are respectively Fourier transforms of wave function ψ(x, t) and
external potential V(x). The Fourier transform of harmonic well V0(x) is

Ṽ0(k) =
∫ ∞

−∞
V0(x) exp(−ikx)dx =

mω2

2

∫ ∞

−∞
x2 exp(−ikx)dx

=
mω2

2(−i)2

∫ ∞

−∞

∂2 exp(−ikx)
∂k2 dx = −mω2

2
∂2

∂k2

∫ ∞

−∞
exp(−ikx)dx

= −πmω2 ∂2δ(k)
∂k2 , (10)

where δ(k) = 1/(2π)
∫ ∞
−∞ exp(−ikx)dx is the Dirac delta function. The complex-conjugate

of Equation (9) is

− ih̄
∂ψ̃∗(k, t)

∂t
=

h̄2k2

2m
ψ̃∗(k, t) +

1
2π

∫ ∞

−∞
Ṽ∗(k− k1)ψ̃

∗(k1, t)dk1. (11)

By ψ̃∗(k, t)× Equation (9)−ψ̃(k, t)× Equation (11), we obtain

ih̄
∂ρkk(t)

∂t
= ih̄

[
ψ̃∗(k, t)

∂ψ̃(k, t)
∂t

+ ψ̃(k, t)
∂ψ̃∗(k, t)

∂t

]
=

1
2π

∫ ∞

−∞

[
Ṽ(k− k1)ψ̃

∗(k, t)ψ̃(k1, t)− Ṽ∗(k− k1)ψ̃(k, t)ψ̃∗(k1, t)
]
dk1, (12)

describing the evolution of momentum distribution ρkk(t). By Ṽ = Ṽ0 + Ṽ1, Equation (12)
can be reorganized as

∂ρkk(t)
∂t

= − 1
πh̄

∫ ∞

−∞
=
[
Ṽ∗(k− k1)ρkk1

]
dk1

= − 1
πh̄

∫ ∞

−∞
=
[
Ṽ∗0 (k− k1)ρkk1

]
dk1 −

1
πh̄

∫ ∞

−∞
=
[
Ṽ∗1 (k− k1)ρkk1

]
dk1

=
ω

l2

∫ ∞

−∞
=
[

∂2δ(k− k1)

∂k2
1

ψ̃(k, t)ψ̃∗(k1, t)

]
dk1 −

1
πh̄

∫ ∞

−∞
=
[
Ṽ∗1 (k− k1)ρkk1

]
dk1

=
ω

l2

∫ ∞

−∞
=
[

δ(k− k1)ψ̃(k, t)
∂2ψ̃∗(k1, t)

∂k2
1

]
dk1 −

1
πh̄

∫ ∞

−∞
=
[
Ṽ∗1 (k− k1)ρkk1

]
dk1

=
ω

l2=
[

ψ̃(k, t)
∂2ψ̃∗(k, t)

∂k2

]
− 1

πh̄

∫ ∞

−∞
=
[
Ṽ∗1 (k− k1)ρkk1

]
dk1, (13)

where l =
√

h̄/mω (harmonic trapping length), ρkq ≡ ψ̃(k, t)ψ̃∗(q, t), and =[A] denotes the
imaginary part of A. The first term of the right-hand side of Equation (13), which comes
from the harmonic potential, indicates the contribution of diagonal elements of the density
matrix, while the second term, from the barrier potential V1, indicates the contribution of
off-diagonal elements, which could lead to the decoherence of a density matrix.

Substitution of Equation (13) into Equation (7) yields

dSp(t)
dt

=
kB

2π2h̄

∫ ∞

−∞

∫ ∞

−∞
=
[
Ṽ∗(k− k1)ρkk1

]
ln
( ρkk

2πl

)
dkdk1

= − kBω

2πl2

∫ ∞

−∞
=
[

ψ̃(k, t)
∂2ψ̃∗(k, t)

∂k2

]
ln
( ρkk

2πl

)
dk

+
kB

2π2h̄

∫ ∞

−∞

∫ ∞

−∞
=
[
Ṽ∗1 (k− k1)ρkk1

]
ln
( ρkk

2πl

)
dkdk1. (14)
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It will be shown later that only the second term of the right-hand side of the equation
above, coming from barrier potential V1, would contribute to the increasing of entropy.

For QHO, the generalized coherent states (GCSs) |n, α〉, with n denoting the quantum
number and α the complex quantum number, have the following forms in position and
momentum spaces [22]:

ϕα,n(x, t) = 〈x|α, n〉 = 1√
l
φn

(
x− x̄

l

)
exp(−inωt) exp

[
−i
(

ωt
2
− xk̄ +

x̄k̄
2

)]
, (15)

ϕ̃α,n(k, t) = 〈k|α, n〉 = in
√

2πlφn
[
l(k− k̄)

]
exp(−inωt) exp

[
−i
(

ωt
2
− x̄k +

x̄k̄
2

)]
(16)

with x̄(t)/l =
√

2α cos(ωt), lk̄(t) = −
√

2α sin(ωt), and the eigenfunction of quantum har-
monic oscillator φn(x) = 1/(π1/4

√
2nn!)Hn(x) exp(−x2/2), which carries energy εα,n =

(α2 + n + 1/2)h̄ω. Hn(x) is Hermite polynomial. Note that the corresponding wave packet
oscillates in the harmonic potential (with time period 2π/ω) without changing the shape
of density.

The initial conditions in x- and k-space corresponding to a mixture of GCSs would
have the forms

ψ(x, 0) = ∑
n

cn ϕα,n(x, 0) =
1√

l
∑
n

cnφn

[
x− x̄(0)

l

]
(17)

and

ψ̃(k, 0) = ∑
n

cn ϕ̃α,n(k, 0) =
√

2πl ∑
n

incnφn
[
l(k− k̄(0))

]
exp

[
i
(

x̄(0)k− x̄(0)k̄(0)
2

)]
, (18)

where cn is the coefficient of superposition. x̄(0) =
√

2αl and k̄(0) = 0 are the initial
centroid locations of wave packet in position and momentum spaces, respectively. Without
V1, for an initial condition with superposition of two CGSs at most, ψ̃(k, t) = cn ϕ̃α,n(k, t) +
cn′ ϕ̃α,n′(k, t), ρkk is read as

ρkk(t)
2πl

= |cn|2φ2
n
[
l(k− k̄)

]
+ |cn′ |2φ2

n′
[
l(k− k̄)

]
+ 2<

[
i(n−n′)cnc∗n′ exp

[
−i
(
n− n′

)
ωt
]]

φn
[
l(k− k̄)

]
φn′
[
l(k− k̄)

]
, (19)

which basically still oscillates in the harmonic trap with period 2π/ω, since k̄ is a periodic
function of time, but with the shape modulated by a period 2π/[(n− n′)ω] due to the
factor exp[−i(n − n′)ωt]. Here, <[A] denotes the real part of A. For the case of single
CGS, distribution Equation (19) reduces to ρkk(t) = 2πlφ2

n
[
l(k− k̄)

]
, which oscillates with

a period 2π/ω and without changing its shape, so that the corresponding entropy Sp(t) is
just a constant according to Equation (6) shown as the blue horizontal line in Figure 1. This
can also be verified by the vanishing of the first term on the right-hand side of Equation (14)
(see Appendix A for details). For the case of a mixture of GCS, the wave packet again
oscillates inside the harmonic trap but with the shape of density modulated periodically.
Therefore, its corresponding entropy is periodic in time as shown with the red line in
Figure 1.



Entropy 2022, 24, 1163 6 of 12

Figure 1. Time development of Shannon entropies for a quantum oscillator in various initial con-
ditions. For a harmonic confining potential only, blue and red lines correspond respectively to the
initial conditions with single (ψα,0) and the superposition of two (ψα,0 and ψα,2) GCSs. Here, we took
α = 15/

√
2, which means that the initial centroid position x̄(0) is 15l. By the addition of a Gaussian

barrier with strength VG = 100h̄ω and width l, green and black lines correspond respectively to the
initial conditions with single and the superposition of two GCSs.

3. Barrier Potential Produces Entropy and Decoherence

As postulated earlier, a bump (barrier) potential may cause the wave scattering of
an oscillating wave packet, which leads to its decoherence featured by the increasing of
entropy. Here, we consider a single central Gaussian barrier, V1(x) = VG exp(−x2/l2),
of which the Fourier transform is Ṽ1(k) = VGl

√
π exp(−k2l2/4). One can picture that,

with this Ṽ1(k) recruited to Equation (14), it can lead to the production of entropy. Since
integrating the second term into the right-hand side of Equation (14) by hand is infeasible,
we can only verify this entropy production by integrating TDSE, Equation (8), numerically.

Figure 1 shows the time development of Shannon entropies for a quantum oscillator
in various initial conditions. For V = V0 only, blue and red lines correspond to the initial
conditions for an off-centered single GCS (ϕα,0) and a mixture of two GCS’s (ϕα,0 and ϕα,2),
respectively. Here, we took α = 15/

√
2, which means that the initial centroid position is

x̄(0) = 15l, a position far away from the bump barrier such that the wave packet would not
be immediately affected by the bump barrier right at the beginning of oscillation. The total
energies of these two cases are E = (152 + 1)/2h̄ω and E = (152 + 3)/2h̄ω, respectively.
For V = V0 +V1, with the recruitment of a Gaussian barrier V1 having strength VG = 100h̄ω,
green and black lines correspond to the initial conditions for an off-centered single GCS
and a mixture of two GCS’s as above. With the increasing trend of entropy, shown by
green and black lines, it verifies the entropy production owing to the inclusion of barrier
potential. Note that the fluctuations of green and black lines come from the modulation
of the wave packet when oscillating within the trap. As time goes on, the system reaches
thermal equilibrium and the entropies of green and black lines would grow to become
saturated with diminishing fluctuations. The shape of wave packet, or density distribution,
at equilibrium will be discussed in the next section.

Besides producing entropy, thermalization also causes the decoherence of a wave
packet. Here, we define a spatial autocorrelation function (SACF) for wavefunction in order
to measure the autocorrelation length, which can serve as a good indicator of coherence in
a quantum system:
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f (x, t) =
∣∣∣∣∫ ∞

−∞
ψ∗(x− x′, t)ψ(x′, t)dx′

∣∣∣∣ = ∣∣∣∣ 1
2π

∫ ∞

−∞
ρkk(t) exp(ikx)dk

∣∣∣∣. (20)

f (x, t) depends intimately on the behaviors of ψ(x, t) and measures the correlation between
points separated by x at a given time t. Figure 2 shows f (x, t) at an initial time and equilib-
rium with the blue curve corresponding to the initial one and the red curve corresponding
to the equilibrium one.

Figure 2. Spatial autocorrelation function plotted at t = 0 (blue line) and at equilibrium, t� tth, (red
line) for the case of a single GCS (ψα,0), corresponding to a green line in Figure 1.

At the beginning of oscillation, f (x, t = 0) exhibits a close-to-unity constant distribu-
tion in space, featuring a large autocorrelation length indicating that the system is highly
coherent. In contrast, when the system comes to equilibrium, f (x, t� tth) is largely nar-
rowed, featuring a small autocorrelation length indicating the strong incoherence of system.
tth is the so-called thermalization time, after which the system reaches equilibrium [12].
This significant decreasing of autocorrelation length reveals the decoherence of system
during thermalization.

4. Density Distribution When Reaching Thermal Equilibrium

Figure 3 shows density distributions at initial time (green line) and equilibrium (blue
line), with panels (a) and (c) in position space, and panels (b) and (d) in momentum space.
One can see from panels (a) and (c), where the initial narrowly distributed ρ(x), centered
at x̄(0) = 15l, evolves to a centered-at-zero, symmetric, and much broader distribution
at equilibrium. Similarity for the evolution of ρkk is shown in panels (b) and (d), with the
initial distribution centered at 0. These distributions are very close to the microcanonical
distribution for a classical harmonic oscillator. In a microcanonical ensemble of a classical
harmonic oscillator with a given energy E, the probability distribution in phase space is

Pc(x, k) = h̄ωδ

(
E−V(x)− h̄2k2

2m

)
(21)

with 1/(2π)
∫ ∞
−∞ Pc(x, k)dxdk = 1, where δ(· · · ) is the Dirac delta function. The red lines

in Figure 3 show the best fitting in position space, ρc(x), and momentum space, ρ̃c(k):

ρc(x) =
1

2π

∫ ∞

−∞
Pc(x, k)dk =

mω

π
√

2m[E−V(x)]
for − xt < x < xt, (22)
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and
ρ̃c(k) =

∫ ∞

−∞
Pc(x, k)dx ' 2h̄√

2mE− h̄2k2
for− kt < k < kt, (23)

which are obtained from the microcanonical ensemble of statistical mechanics and are
derived in Appendix B. Note that Equation (23) is approximated by neglecting the barrier
potential V1(x) = VG exp(−x2/l2) and letting V(x) = V0(x) = mω2x2/2. This is because,
if the energy of system, E, is large enough, the effect of Gaussian barrier on phase-space
distribution Equation (21) would be weak, and therefore the consequent distribution in
momentum space can be approximated by ignoring it.

Figure 3. Initial (green line) and equilibrium (blue line) density distributions for a quantum oscillator
in a harmonic trap with a Gaussian barrier. Red line is the best fitting from (22) and (23). Frames (a,c)
correspond respectively to density distributions in position space with initial conditions ψ(x, 0) = ϕα,0

shown in frame (a), and ψ(x, 0) = (ϕα,0 + ϕα,2)/
√

2 shown in frame (c). The counterpart density in
momentum space is shown in frames (b,d). The black arrow indicates the moving direction of an
initial wave packet (green line).

5. Energy Transformation

To monitor the evolution of kinetic and potential energies of the wave packet during its
oscillation within the trap and the energy exchange between these two energy components,
it is useful to consider the free energy of the system: F = E − E0, where E is the total
energy. Since total energy is conserved all the time, E(t) = E(0), with E(0) corresponding
to the initial total energy of a wave packet, which is an GCS (or a mixture of GCSs) of the
harmonic trap placed off-center initially. E0 corresponds to the total energy of the initial
wave packet located right at the center of trap, which would be stationary if the barrier
potential V1(x) is neglected. Here, E = K + U and similarly E0 = K0 + U0 with K (K0) and
U (U0) corresponding to kinetic and potential parts of energy. Basically, K(0) = K0 since the
shape of wave packet is the same, and U(0) > U0 due to the initial off-center displacement
of the wave packet. Therefore, F(0) = E(0)− E0 = U(0)−U0, which means that the initial
free energy is the initial excessive potential energy. When there is no barrier potential,
the wave packet would keep its coherence with free energy F(t) conserved and just re-
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distributed into kinetic and potential energies dynamically. It means that wave packet
oscillates within the trap without thermalization as indicated by its non-increasing Shannon
entropy depicted by the blue and red lines in Figure 1. Meanwhile, both K(t)− K0 and
U(t)−U0 are periodic in time with their sum, F(t), fixed in time, which means kinetic and
potential energies fully exchange with each other during oscillation similar to a harmonic
oscillator free of friction.

When barrier potential V1(x) exists, the oscillating wave packet is thermalized as
indicated by its increasing Shannon entropy depicted by the green and black lines in
Figure 1. Meanwhile, both K(t) − K0 and U(t) − U0 still oscillate with time but with
diminishing amplitudes as shown in Figure 4. Note that their sum, F(t), is still conserved
in time. This means kinetic and potential energies exchange with each other less and less
during thermalization, by which we can picture the wave packet oscillating less and less
within the trap due to the wave scattering by the barrier. In this sense, the barrier acts like a
friction to the oscillating wave packet that transforms its initial coherent mechanical energy
into an incoherent thermal one. The decoherence of wave packet during thermalization
can also be observed by its density distribution getting modulated by high-frequency
fluctuations, besides a large decreasing of autocorrelation length as described in Figure 2.
Note that the initial excessive coherent potential energy would not be equipartitioned
into incoherent K(t)− K0 and U(t)−U0 as shown in Figure 4 when approaching thermal
equilibrium. This is because the trap is no longer a harmonic one. We can picture that,
when the height of barrier is smaller, energy would be more equipartitioned and sure it
would also take a longer time to reach equilibrium due to a weaker barrier.

Figure 4. Energy evolution of a quantum harmonic oscillator with a Gaussian barrier. Frames (a,b)
respectively show the evolution with time for kinetic and potential energies. Kinetic and potential
energies, deducting their ground state parts, oscillate with time with diminishing amplitudes, while
the total energy is still conserved. With ψ(x, 0) = ϕα,0, the ground-state energy E0 = 4.70, kinetic
energy K0 = 0.74, and potential energy U0 = 3.95.

6. Conclusions

In conclusion, the thermalization in an isolated oscillating BEC in a harmonic trap
superposed with a Gaussian barrier is studied. We solve the dynamic wavefunction ψ(x, t)
of the system and, from it, the relevant physics are obtained. The key results are: (i)
The current microscopic quantum system is found to obey the macroscopic second law
of thermodynamics by the increasing of Shannon entropy during thermalization, (ii) the
production of entropy during thermalization is accompanied by the decoherence of system
featured by the significant reduction of autocorrelation length, and (iii) the Gaussian barrier
potential plays the role of dissipation with energy transformed from a coherent mechanical
energy into an incoherent thermal one. (iv) At equilibrium, the density distributions
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both in position and momentum spaces are well fitted by a microcanonical ensemble of
statistical mechanics.
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Appendix A. The Proof of a Single GCS Oscillating within a Harmonic Trap
Producing No Entropy

For single GCS oscillating within a harmonic trap, the momentum-space wavefunction
and its second derivative are

ψ̃(k, t) = ϕ̃α,n(k, t) = in
√

2πl exp(−inωt) exp
[
−i
(

ωt
2
− x̄k +

x̄k̄
2

)]
φn
[
l(k− k̄)

]
, (A1)

and

∂2
kψ̃(k, t) = in

√
2πl exp(−inωt) exp

[
−i
(

ωt
2
− x̄k +

x̄k̄
2

)]
(∂k + ix̄)2φn

[
l(k− k̄)

]
, (A2)

since
=
[
ψ̃(k, t)∂2

kψ̃(k, t)
]
= −4πlx̄φn

[
l(k− k̄)

]
∂kφn

[
l(k− k̄)

]
(A3)

and
ln
( ρkk

2πl

)
= ln

(
φ2

n
[
l(k− k̄)

])
, (A4)

are odd and even functions of (k− k̄), respectively. Thus, the entropy production rate for
single GCS in a harmonic trap vanishes:

dSp(t)
dt

= − kBω

2πl2

∫ ∞

−∞
=
[

ψ̃(k, t)
∂2ψ̃∗(k, t)

∂k2

]
ln
( ρkk

2πl

)
dk = 0. (A5)

Appendix B. Derivation of Density Distributions in Position and Momentum Spaces
at Equilibrium from Microcanonical Ensemble of Statistical Mechanics

The composition of δ(g(x)) for a continuously differentiable function g is defined by

δ(g(x)) = ∑
i

δ(x− xi)

|g′(xi)|
, (A6)

where the sum extends over all roots of g(x), which are assumed to be simple. Thus,
for example,

δ
(

x2 − α2
)
=

1
2|α| [δ(x− α) + δ(x + α)]. (A7)

Using the above formulas, the best fittings of thermal equilibrium density distributions
in position space, Equation (22) and in momentum space, Equation (23) can be obtained
as follows:
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ρc(x) =
1

2π

∫ ∞

−∞
Pc(x, k)dk

=
h̄ω

2π

∫ ∞

−∞
δ

(
h̄2k2

2m
− [E−V(x)]

)
dk

=
mω

πh̄

∫ ∞

−∞
δ

(
k2 − 2m

h̄2 [E−V(x)]
)

dk

=
mω

π
√

2m[E−V(x)]
for − xt < x < xt, (A8)

and

ρ̃c(k) =
∫ ∞

−∞
Pc(x, k)dx

= h̄ω
∫ ∞

−∞
δ

(
V(x)−

(
E− h̄2k2

2m

))
dx

' h̄ω
∫ ∞

−∞
δ

(
mω2x2

2
−
(

E− h̄2k2

2m

))
dx

=
2h̄

mω

∫ ∞

−∞
δ

(
x2 −

(
2mE− h̄2k2

m2ω2

))
dx

=
2h̄√

2mE− h̄2k2
for − kt < k < kt, (A9)

with xt =
√

2E/(mω2) and kt =
√

2mE/(h̄2) being the roots of g in position and mo-
mentum spaces when applying Equation (A6). Furthermore, using the integral formula∫ α
−α dx/

√
a2 − x2 = π, the normalized conditions of Equations (22) and (23) can also be

obtained: ∫ ∞

−∞
ρc(x)dx =

∫ xt

−xt

mω

π
√

2m[E−V(x)]
dx

'
∫ xt

−xt

1

π
√

x2
t − x2

dx

= 1, (A10)

and ∫ ∞

−∞
ρ̃c(k)dk =

∫ kt

−kt

2h̄√
2mE− h̄2k2

dk

=
∫ kt

−kt

2√
k2

t − k2
dk

= 2π. (A11)
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