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Abstract: The issue of the thermodynamics of a system of distinguishable particles is dis-
cussed in this paper. In constructing the statistical mechanics of distinguishable particles
from the definition of Boltzmann entropy, it is found that the entropy is not extensive. The
inextensivity leads to the so-called Gibbs paradox in which the mixing entropy of two iden-
tical classical gases increases. Lots of literature from different points of view were created
to resolve the paradox. In this paper, starting from the Boltzmann entropy, we present the
thermodynamics of the system of distinguishable particles. A straightforward way to get the
corrected Boltzmann counting is shown. The corrected Boltzmann counting factor can be
justified in classical statistical mechanics.
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1. Introduction

The concepts of distinguishable and indistinguishable particles is important in Statistical Mechanics
as their corresponding entropies are different. The entropy in statistical mechanics is defined in terms of
the logarithm of the number of the accessible microstates in the phase space. The definition of the entropy
is called Boltzmann entropy in which it is adopted in popular textbooks [1–4]. The microstates numbers
for distinguishable and indistinguishable particles are certainly different and then their corresponding
Boltzmann entropies are different, too. However, it is not trivial to know whether the distinguishability
property may lead to different physical results. For example, the Gibbs paradox [6–31] presents one of
the cases.

In its simplest case of the Gibbs paradox, the entropy of two identical volume of (distinguishable)
ideal gas increases after mixture in which it violates our intuition. Consider two subsystems of equal
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volumes V and particle numbers N are separated by a wall, the Boltzmann entropy of one system is

S = k lnV N (1)

Hence the total entropy Si of two systems is double,

Si = 2k lnV N (2)

in which the additivity of the Boltzmann entropy is assumed. Now the wall is removed, the gases of two
systems mix. The entropy Sf is

Sf = k ln(2V )2N (3)

Thus the mixing entropy reads

∆S = Sf − Si
= 2Nk ln 2 (4)

which is positive meaning that the mixing process is irreversible according to the second law of ther-
modynamics. Here we also assume the Boltzmann entropy is equivalent to the usual thermodynamical
entropy (that is, the entropy identified in thermal properties).

The essence of the paradox is in fact that the entropy of the distinguishable particles is not extensive.
The entropy of the mixture is not equal to the sum of their partition. To resolve the Gibbs paradox,
one introduces the indistinguishable particles in which a permutation factor 1/N ! (N is the total particle
number) is included in the total microstate number to overcome the overcounting [6]. Hence, the entropy
before mixing in Eq.(2) should be modified as

Si = 2k ln

(
V N

N !

)
(5)

and similarly, the entropy after mixing in Eq.(3) reads

Sf = k ln

(
(2V )2N

(2N)!

)
(6)

The mixing entropy is

∆S = 2Nk ln 2− k ln
(2N)!

(N !)2

= O(lnN) (7)

In the thermodynamical limit N → ∞, the mixing entropy per particle vanishes, and hence the Gibbs
paradox is resolved.

The concept of indistinguishable particles is trivial in Quantum Mechanics. The identical particles
in Quantum Mechanics are indistinguishable particles. Strictly speaking, one cannot distinguish two
identical particles after their collision. At equilibrium, the number of microstates of the whole system is
described in terms of the number representation (or the second quantized representation). The resolution
of the Gibbs paradox is then straightforward in views of the quantum nature of identical particles.
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However, we have also similar case in Classical Mechanics, for example, colloids. The colloidal
particles (giant molecules) of size up to microns are distinguishable since its behavior should be governed
by classical mechanics. In such a classical system, the entropy is certainly not extensive [2, 3] and the
Gibbs paradox appears. Traditionally, to avoid the Gibbs paradox, colloidal particles are treated as
indistinguishable particles [34] without any explicit reason. There is still a puzzle even though this kind
of treatment turns out to be correct.

In this paper, we present the thermodynamics of the system of distinguishable particles, starting from
the definition of entropy for the distinguishable particles. The presentation can easily show how the
“reduced” entropy [32] instead of the original entropy determines the thermodynamical behaviors.

Before introducing our treatment for distinguishable particles, we classify the system of particles into
three categories,

1. Distinguishable particles of the same species

2. Indistinguishable particles (certainly of the same species)

3. Particles of different species (certainly distinguishable)

by their phase spaces. Suppose we call the phase space of the system of N distinguishable particles of
the same species (the first category) be ΓN . The phase space of N indistinguishable particles (the second
category) is then ΓN/SN with the permutation group SN . The permutation group SN is used to eliminate
the overcounting microstate numbers from ΓN .

For the third category, each particle belongs to its particular species. The corresponding phase space
of N particles of different species is Γ1 ⊗ Γ1 ⊗ . . .⊗ Γ1 (total N direct products).

The thermodynamics for the second and third categories were already well discussed in the textbook
[2].

2. Thermodynamics of Distinguishable Particles

To study the thermodynamical variables of the distinguishable particle system, we consider two sub-
systems of particle number N1, N2, volumes V1, V2, energies E1, E2, respectively, in which their parti-
cles, volumes, and energies are allowed to be exchanged.

Before two subsystems in contact, the phase space is ΓN1 ⊗ ΓN2 . After contact, the phase space
becomes ΓN1+N2 which is larger than ΓN1 ⊗ ΓN2 by (N1 + N2)!/(N1!N2!) times. This number is the
number of way to select N1 particles and N2 particles from the total N1 +N2 particles. That is,

ΓN1+N2 = (ΓN1 ⊗ ΓN2)⊕ (ΓN1 ⊗ ΓN2)⊕ . . . (8)

in which there are total (N1 + N2)!/(N1!N2!) copies (or configurational degeneracy). This degeneracy
was pointed out by Penrose [5].

The total entropy as a whole becomes

S = S1(N1, V1, E1) + S2(N2, V2, E2) + k ln
(N1 +N2)!

N1!N2!
(9)

S1 and S2 are the entropies of the subsystems separately. The last term arises from the configurational
degeneracy. The existence of the additional term is due to the nonextensive property of the system. The
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distinguishability implies nonextensivity of the entropy [3] in which the total system entropy is not the
naive addition of the subsystem entropies. Similar cases are also well known in other physical system
[33].

Because of that, it is easily seen that the Gibbs paradox usually mentioned in the textbook [2] vanishes
when we look at the phase space of the system of distinguishable particles carefully.

When two subsystems are in equilibrium, the total entropy attains its maximum, then we have

S = S1(N1, V1, E1) + S2(N2, V2, E2) + S0(N1, N2) (10)

with S0 = k ln((N1 + N2)!/(N1!N2!)) from Eq. (9). Under the constraint of energy E1 + E2 = E,
volume V1 + V2 = V , and particle number N1 + N2 = N , the equilibrium attains when the entropy
becomes extremum such that

∂S

∂E1

=
∂S1

∂E1

− ∂S2

∂E2

= 0 (11)

∂S

∂V1

=
∂S1

∂V1

− ∂S2

∂V2

= 0 (12)

∂S

∂N1

=
∂S1

∂N1

− ∂S2

∂N2

+
∂S0

∂N1

= 0 (13)

We can then obtain, for the system of distinguishable particles, the expression of the temperature T as

1

T
=

(
∂S1

∂E1

)
V1,N1

=

(
∂S2

∂E2

)
V2,N2

(14)

the pressure P as

P

T
=

(
∂S1

∂V1

)
E1,N1

=

(
∂S2

∂V2

)
E2,N2

(15)

By noticing that

∂S0

∂N1

= − ∂

∂N1

(k lnN1!) +
∂

∂N2

(k lnN2!) (16)

we can express the chemical potential µ as

µ

T
= − ∂(S1 − k lnN1!)

∂N1

∣∣∣∣∣
E1,V1

= − ∂(S2 − k lnN2!)

∂N2

∣∣∣∣∣
E2,V2

(17)

Now we introduce the “reduced” entropy [32]

Sred = S − k lnN ! (18)

such that the above expressions for thermodynamical variables

1

T
=

(
∂Sred

∂E

)
V,N

(19)

P

T
=

(
∂Sred

∂V

)
E,N

(20)

µ

T
= −

(
∂Sred

∂N

)
E,V

(21)
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are re-written in the usual way of thermodynamics for indistinguishable particles. For the system of
distinguishable particles, the “reduced” entropy Sred instead of the original entropy S defines the ther-
modynamical variables of the system. Our presentation is somehow a straightforward way to justify the
“reduced” entropy adopted for the classical (distinguishable) systems in condensed matter physics [34].

For the case of indistinguishable particles defined in the phase space ΓN/SN , its entropy is simply
equivalent to the “reduced” entropy mentioned above. Although the original entropies for both the
distinguishable and indistinguishable particles are different, the entropies governing their corresponding
thermodynamics are still the same. Thermodynamics cannot tell the distinguishability of the system.

Suppose our system isN1, V1, E1 in contact with the reservoir ofN2, V2, E2 in whichN1 � N2, V1 �
V2, E1 � E2, the entropy of the reservoir can be expanded into Taylor’s series around N, V,E such that

S = S1(N1, V1, E1) + S2(N2, V2, E2) + S0(N1, N2)

= Sred
1 (N1, V1, E1) + Sred

2 (N2, V2, E2) + k lnN !

' Sred
2 (N2, V2, E2) + k lnN ! (22)

in which the system entropy S1 is neglected assuming S1 � S2. The reduced entropy Sred
2 can be

analyzed by Taylor’s series expansion around N, V,E up to first order, that is,

Sred
2 (N2, V2, E2)

= Sred
2 (N −N1, V − V1, E − E1)

= Sred
2 (N, V,E)−N1

(
∂Sred

2

∂N2

)
E,V,N2=N

− V1

(
∂Sred

2

∂V2

)
E,N,V2=V

− E1

(
∂Sred

2

∂E2

)
E2=E

= Sred
2 (N, V,E)− 1

T
(−µN1 + E1 + V1P ) (23)

with the temperature of the reservoir T .
The total entropy becomes

S = Sred
2 (N, V,E)− 1

T
(−µN1 + E1 + V1P ) + k lnN !

= − 1

T
(−µN1 + E1 + PV1) + C (24)

where C is a constant independent of N1, E1, V1. The probability p(N1, V1, E1) of the system is propor-
tional to the corresponding phase space volume. The phase space we are now considering is ΓN1+N2 ,
and hence from Eq. (8) there are exactly N !/(N1!N2!) copies of the state characterized by N1, V1, E1.
We have

p(N1, V1, E1) ∝
N !

N1!N2!
Ω1(N1, V1, E1)

∝ 1

N1!
Ω1(N1, V1, E1)

∝ 1

N1!
exp(

µN1 − E1 − PV1

kT
) (25)

under the condition that N1 � N2.
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The probability distribution allows us to formulate the Grand Canonical ensemble in which our system
interacts with a particle-energy reservoir. The grand partition function

Ξ(µ, V, T ) =
∞∑

Nr=0

∑
s

1

Nr!
eµNr/kT e−Es/kT

=
∞∑

Nr=0

eµNr/kTZNr(V, T ) (26)

with the partition function

ZNr(V, T ) =
1

Nr!

∑
s

e−Es/kT (27)

of the corrected Boltzmann counting due to the factor 1/Nr!.

3. Conclusion

In summary, although the phase spaces of the system of distinguishable particles is different from that
of indistinguishable one, their thermodynamics are in fact equivalent. It also implies that the corrected
Boltzmann counting factor can be justified in classical statistical mechanics.
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