
AIP Advances 11, 065308 (2021); https://doi.org/10.1063/5.0046803 11, 065308

© 2021 Author(s).

Analytical studies of the magnetic domain
wall structure in the presence of non-
uniform exchange bias
Cite as: AIP Advances 11, 065308 (2021); https://doi.org/10.1063/5.0046803
Submitted: 09 February 2021 . Accepted: 13 May 2021 . Published Online: 03 June 2021

Yee-Mou Kao, Lance Horng, and  Chi-Ho Cheng

COLLECTIONS

Paper published as part of the special topic on Chemical Physics, Energy, Fluids and Plasmas, Materials Science

and Mathematical Physics

https://images.scitation.org/redirect.spark?MID=176720&plid=1486011&setID=378289&channelID=0&CID=538682&banID=520405030&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=21da1d28a7c316e5a1e849b56105f7c8034f735f&location=
https://doi.org/10.1063/5.0046803
https://doi.org/10.1063/5.0046803
https://aip.scitation.org/author/Kao%2C+Yee-Mou
https://aip.scitation.org/author/Horng%2C+Lance
http://orcid.org/0000-0001-6127-3115
https://aip.scitation.org/author/Cheng%2C+Chi-Ho
/topic/special-collections/cp2019?SeriesKey=adv
/topic/special-collections/eng2019?SeriesKey=adv
/topic/special-collections/fp2019?SeriesKey=adv
/topic/special-collections/ms2019?SeriesKey=adv
/topic/special-collections/mp2019?SeriesKey=adv
https://doi.org/10.1063/5.0046803
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0046803
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0046803&domain=aip.scitation.org&date_stamp=2021-06-03


AIP Advances ARTICLE scitation.org/journal/adv

Analytical studies of the magnetic domain wall
structure in the presence of non-uniform
exchange bias

Cite as: AIP Advances 11, 065308 (2021); doi: 10.1063/5.0046803
Submitted: 9 February 2021 • Accepted: 13 May 2021 •
Published Online: 3 June 2021

Yee-Mou Kao,a) Lance Horng, and Chi-Ho Chengb)

AFFILIATIONS
Department of Physics, National Changhua University of Education, Changhua 500, Taiwan

a)ymkao@cc.ncue.edu.tw
b)Author to whom correspondence should be addressed: phcch@cc.ncue.edu.tw

ABSTRACT
The pinning phenomena of the domain wall in the presence of exchange bias are studied analytically. The analytic solution of the domain
wall spin configuration is presented. Unlike the traditional solution, which is symmetric, our new solution could exhibit the asymmetry of the
domain wall spin profile. Using the solution, the domain wall position, its width, its stability, and the depinning field are discussed analytically.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0046803

I. INTRODUCTION

Magnetic recording has been the most successful method for
data storage in the last few decades. In 2008, Parkin et al. proposed a
racetrack memory that has all the advantages of magnetoresistance
random access memory (MRAM) and an all-metallic semiconductor
free structure.1 Racetrack memory consists of a ferromagnetic wire
where a magnetic domain wall (DW) can be injected and detected.
A 180

○
transverse DW carries a data bit via its configuration of

either north to north or south to south poles. Several directions
were proposed to apply nanofabrication techniques to geometri-
cally control the DW width and shape.2 Artificially induced defects
could be used as pinning sites, while nanopatterned structures pro-
vide modification of the DW’s configuration, size, and dynamical
properties.3

Recently, it was found that the pinning site, e.g., notch, may
generate topological defects and then change the chirality and topo-
logical properties of the DW structure. The chirality of the DW will
affect its trajectory in a Y-shaped wire.4,5 Topological defect pinning
may not be a good option for data storage.

Another option is making use of the exchange bias effect
to pin the DW in the ferromagnetic material, which could be
more stable and smaller in size. As illustrated in Fig. 1, the
DW is generated in the ferromagnetic (F) wire.6 The pinning is

controlled through the exchange bias induced by the antiferromag-
netic (AF) wire. Its possibility was recently realized in experiments7

and simulation.8 However, its theoretical understanding is still
lacking.

In extreme conditions, without the magnetostatic and surface
energies, only the anisotropy and exchange energies are considered,
and the spin orientation near the domain wall9,10 reads

θ(x) = 2 tan−1[exp(x
λ
)], (1)

describing a head-to-head block wall in the x-direction with a spin
angle θ(x).11 λ =

√
Aex/K, with Aex being the exchange stiffness

and K being the anisotropy constant along the x-axis. This for-
mula gives the domain wall width δDW ≃ πλ and the energy density
εDW = 4

√
AexK.

For thin magnetic nanowires, since the shape anisotropy is
mainly determined by the thickness and width of the nanowires, the
anisotropy should be perpendicular or in-plane.12,13 In this paper,
only the in-plane case is considered for simplicity. The analytic solu-
tion of the domain wall profile is obtained. With the help of the
analytic solution, the relationship between spin orientation and the
length scales of the domain wall is derived. The position of the
domain wall, its width, and its stability are also discussed.
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FIG. 1. Illustration of the exchange bias field (red arrows) and magnetization vec-
tors (gray arrows) in the F wire. The AF wire boundary is marked by blue lines.
The domain wall region is identified by gray dashed lines. The exchange bias
fields—HebL in the left and HebR in the right—are oriented in opposite directions.

II. MODEL FOR NON-UNIFORM EXCHANGE BIAS
In ferromagnetic material, two magnetic atoms interact with

the so-called exchange interaction, JS⃗1 ⋅ S⃗2. J is the exchange con-
stant, and S⃗1 and S⃗2 are the magnetic moments of the two atoms.
In one-dimensional wire and a continuum limit, suppose the atoms
only interact with their nearest neighbors and the direction of mag-
netization varies slowly along the wire, then the energy, which we
call the exchange energy Eex, is

Eex = Aex∫
+∞

−∞
dx(dθ

dx
)

2

(2)

up to a constant. Aex, which is proportional to J, is called the
exchange constant. θ(x) is the orientation of the magnetization at
position x.

If we further consider the coupling between the ferromagnetic
material and another antiferromagnet, a unidirectional anisotropy
would be induced in the ferromagnetic material, which is usually
referred to as exchange bias.14 The corresponding exchange bias
energy density could be modeled by

εeb = −Keb cos(θ(x) − θeb), (3)

where Keb is called the unidirectional exchange coupling constant.
θeb is the angle between the magnetic moment and unidirectional
anisotropy axes.

In our system, as illustrated in Fig. 1, besides the exchange
energy of the F wire, there is also the exchange bias energy Eeb
due to the coupling between the F and AF wires. At the interface
between F and AF wires, the exchange anisotropy effect could create
the domain wall in the F wire. As shown in Fig. 1, in the left (right)
hand side of the F wire, the magnetization points to the right (left)
due to the coupling from the AF wire. Hence,

θeb =
⎧⎪⎪⎨⎪⎪⎩

0 if x < 0

π if x > 0,
(4)

and Keb is also different in the left and right sides. We define the
exchange bias field H⃗eb such that its magnitude Heb = Keb/Ms, where
Ms is the saturation magnetization of the F wire. The direction of H⃗eb
is along the unidirectional anisotropy axes. It follows that

H⃗eb =
⎧⎪⎪⎨⎪⎪⎩

HebL êx if x < 0

−HebR êx if x > 0,
(5)

where HebL and HebR are the exchange bias field intensities in the left
and right regions, respectively. The domain wall width in the range
of 150 nm to 1 μm can be obtained at the boundary between two
regions with opposite exchange bias fields ranging from 50 to 300
Oe. These exchange bias values are compatible with those found in
the Fe40Co40B20/Ir20Mn80 or Py/Ir20Mn80 systems.15

Equation (3) can then be re-written as

εeb = −M⃗ ⋅ H⃗eb, (6)

where M⃗ =Ms(êx cos θ(x) + êy sin θ(x)). It turns out that the
exchange bias energy

Eeb = −∫
+∞

−∞
dxM⃗ ⋅ H⃗eb. (7)

The pinning of the DW by exchange bias with two regions
characterized by different unidirectional anisotropy was proposed
by Albisetti and Petti.8

III. DOMAIN WALL STRUCTURE
Combining the exchange energy Eex in Eq. (2) and the exchange

bias energy Eeb in Eq. (7), we get the DW energy

E = Aex∫
+∞

−∞
dx(dθ

dx
)

2

− ∫
+∞

−∞
dxM⃗ ⋅ H⃗eb. (8)

The DW profiles are determined by competition. Decomposing the
DW energy into two regions leads to

E = ∫
∞

0
dx[Aex(

dθ
dx
)

2

+MsHebR cos θ]

+∫
0

−∞
dx[Aex(

dθ
dx
)

2

−MsHebL cos θ]. (9)

Minimization with respect to θ(x) gives

2Aex
d2 θ
dx2 −MsHebL sin θ = 0 if x < 0, (10)

2Aex
d2θ
dx2 +MsHebR sin θ = 0 if x > 0 (11)

with the boundary conditions

lim
x→−∞θ(x) = 0, (12)

lim
x→+∞θ(x) = π, (13)
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and furthermore, the continuity imposed at x = 0 gives θ(x = 0) = θ0
as an undetermined parameter. The solution is found to be

θ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4 tan−1[tan(θ0

4
) exp( x

λL
)] if x < 0

π − 4 tan−1[tan(π − θ0

4
) exp(− x

λR
)] if x > 0,

(14)

where λL =
√

2Aex/(MsHebL) and λR =
√

2Aex/(MsHebR) define the
length scales of the domain wall in the left and right regions, respec-
tively. Here, we obtained a formula different from the traditional one
used in micromagnetics, as shown in Eq. (1). The traditional for-
mula is applied for the head-to-head block wall whereas it is the Néel
wall in our case. The spin orientation at x = 0, θ0, is determined by
the continuity of its derivatives, i.e., θ′(x = 0−) = θ′(x = 0+), which
gives

θ0 = 2 tan−1( λL

λR
). (15)

If the bias field is symmetric, i.e., HebL = HebR, then λL = λR,
θ0 = π/2, and obviously, the DW center xc = 0 by symmetry. In gen-
eral, the bias field is not necessary to be symmetric, i.e., HebL ≠ HebR,
and the DW width becomes δDW = π(λL + λR)/2.16 The DW center,
xc, defined as the position such that θ(xc) = π/2, can be found by
using Eqs. (14) and (15), which is

xc =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λR[ln(
√

2 + 1) − ln(
√

λ2
L + λ2

R + λL

λR
)] if HebL > HebR

−λL[ln(
√

2 + 1) − ln(
√

λ2
L + λ2

R + λR

λL
)] if HebL < HebR.

(16)
If the lowest order is kept, the expression can be simplified as

xc =
1√
2
(λR − λL) (17)

for ∣λL − λR∣≪ λL and ∣λL − λR∣≪ λR. This serves as a useful for-
mula for fast estimation of the domain wall center position. The spin
orientation θ(x) along the F wire for different biases is shown in
Fig. 2. It can be seen that as the bias field asymmetry increases, the
domain wall becomes wider, and the domain wall center will shift
to the direction of lower bias. It implies that one can fine-tune the
DW position and modify the DW width through exchange bias. To
quantify their changes, let the dimensional parameter h = HebL−HebR

HebL+HebR

to represent the degree of asymmetry bias. The DW width and the
center position can then be re-written as

δDW =
π
2

√
Aex

Ms(HebL +HebR)
[(1 + h)−1/2 + (1 − h)−1/2]

= π
√

Aex

Ms(HebL +HebR)
[1 + 3

8
h2 + 35

128
h4 +O(h6)] (18)

and

xc =
√

Aex

2Ms(HebL +HebR)
h(1 + 1

4
∣h∣ + 13

24
∣h∣2 +O(∣h∣3)). (19)

The plots of their relationship with h are shown in Fig. 3.

FIG. 2. Spin orientation θ(x) as a function of x in the unit of length scale
√

Aex

Ms(HebL+HebR) for different HebL in the unit of (HebL + HebR)/2.

If an external magnetic field H⃗ext = Hextêx is applied along the F
wire, the bias asymmetry is modified, so it turns out to be described
by an effective exchange bias field H⃗eff

eb , which is the sum of H⃗eb from
Eq. (5) and H⃗ext, i.e.,

H⃗eff
eb =
⎧⎪⎪⎨⎪⎪⎩

(HebL +Hext) êx if x < 0

(−HebR +Hext) êx if x > 0.
(20)

When the applied field Hext approaches the exchange bias in the
right region, HebR, the corresponding DW width in the right, which
is described by the length scale

√
2Aex/(Ms(HebR −Hext)), will

diverge. Physically, it implies that the domain wall becomes unstable.
Such a critical external field,

Hc = HebR, (21)

should correspond to the depinning field with the same order of
magnitude. It is consistent with the experimental observation that
the wider the AF wires, the larger the exchange bias, and hence, the
larger the depinning field.7

The variation in Eeb is justified in polycrystalline exchange
bias systems characterized by large antiferromagnetic uniaxial
anisotropy.17 In Fe40Co40B20/Ir20Mn80 systems, the typical values
of saturation magnetization Ms = 750 kA/m, exchange stiffness
Aex = 1.2 × 10−11 J/m, and if Heb is 175 Oe, then λH ≃ 42.8 nm.
The unidirectional anisotropy constant Keb = 6.56 kJ/m3. Then, the

FIG. 3. (a) Domain wall width δDW and (b) the center position xc, in the unit of

length scale
√

Aex

Ms(HebL+HebR) , as a function of h.
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domain width δDW ≃ πλH = 134 nm. The energy density is γDW

≃ 4
√

AexKeb/2 ≃ 1.12 mJ/m2.
Except the exchange energy and the exchange bias energy, there

are other types of interactions involved in reality, for example, the
dipolar interaction, which is at least one order lower.18 The shape
anisotropy constant Ksh = μ0M2

S/2 = 0.35 MJ/m3 due to demagne-
tizing energy is much larger than the unidirectional anisotropy Eeb
= 6.56 kJ/m3 due to exchange bias energy. Although Ksh is much
larger than Keb, in nano-thin, narrow strips, the strong demagnetiz-
ing field forces the magnetization vector parallel to the plane of thin,
narrow strips so that the exchange bias acts as a slight modulation.
This peculiar asymmetric configuration can be obtained experimen-
tally by ion irradiation techniques, by modulating the ion dose for
selectively destroying or weakening the exchange coupling between
the antiferromagnetic and ferromagnetic layers, and therefore, the
exchange bias has asymmetry.19,20

IV. UNIAXIAL ANISOTROPY
In this section, we study the effect of in-plane uniaxial

anisotropy on the DW structure, its stability, and the depinning field
in the one-dimensional wire in the presence of exchange bias.

The in-plane anisotropy should play an important role in deter-
mining the domain wall structure and its width. In particular, the
domain wall width decreases (increases) if the anisotropy is parallel
(perpendicular) to the easy axis.21–23

Let n̂a = êx cos θa + êy sin θa be the direction of the easy axis
due to uniaxial anisotropy; the magnetization will prefer both θa and
its reverse direction π − θa; the anisotropy energy up to the leading
order9 could be represented by

Eani = −Kani∫
∞

−∞
dx cos2(θ − θa), (22)

where Kani > 0 is the uniaxial anisotropy constant.17 Similarly, the
spin orientation is obtained by minimizing the total energy, which
turns out to be

2Aex
d2θ
dx2 −MsHebL sin θ − Kani sin 2(θ − θa) = 0 if x < 0, (23)

2Aex
d2θ
dx2 +MsHebR sin θ − Kani sin 2(θ − θa) = 0 if x > 0. (24)

In the following, the symmetric bias (HebL = HebR = Heb) is assumed
in order to understand the anisotropic effect. Since no closed form
solution of the above-mentioned differential equation is found, we
adopt the solution form in Eq. (14) for the case where the anisotropy
energy is small compared with the exchange bias energy, i.e., Kani
≪MsHeb. The domain wall length scale λL = λR = λ is left as the
variational parameter. The total energy becomes

E = Aex∫
+∞

−∞
dx(dθ

dx
)

2

− ∫
+∞

−∞
dxH⃗eb ⋅ M⃗

+Kani∫
∞

−∞
dx cos2(θ − θa)

= 4(2 −
√

2)Aex

λ
+ 2(2 −

√
2)MsHebλ

+ 4
3
(4 −
√

2)Kaniλ cos 2θa. (25)

FIG. 4. Spin orientation θ(x) as a function of x, in the unit of
√

Aex

Kani
, for different

HebMs

Kani
. Kani = 103 J/m3 (along the x-axis).

Minimization with respect to λ gives

λ =
¿
ÁÁÀ 6Aex

3MsHeb + 2(3 +
√

2)Kani cos 2θa
. (26)

To compare with the simulation result,8 we set the same values of
Kani as used in simulation. The spin orientation θ(x) for different
Heb/Kani is shown in Fig. 4. It shows that the larger the anisotropy,
the larger the DW width. The domain wall length scale λ (same order
of magnitude as the domain wall width) as a function of Heb for
different anisotropies is shown in Fig. 5. It can be seen that the dif-
ference in DW width for different anisotropies is insignificant if the
exchange bias is large enough. It implies that for large exchange bias,
the structure of the DW would be slightly modified by the anisotropy
effect. Our result is consistent with simulation for which the same
plot is shown in Fig. 4(a) in Ref. 8.

If the anisotropy effect takes place along the y-axis, once Kani
≳MsHeb, the domain wall width is sufficiently large such that the
boundary condition imposed in Eq. (12) becomes invalid.

If the external magnetic field H⃗ext = Hextêx is applied, similar
to the case in Sec. III, we could replace Heb by the effective one,
i.e., Heff

eb = −Heb +Hext, in the right side. The solution in Eq. (14)
becomes physically unstable when the DW length scale, λ, in Eq. (26)
diverges. At this moment, Heff

eb = −Hc +Hext. It defines the critical

FIG. 5. Domain wall length scale, λ, in the unit of
√

Aex

Kani
, as a function of exchange

bias field Heb for Kani = 0, 103 J/m3 (along the x-axis, θa = 0), and 103 J/m3 (along
the y-axis, θa = π/2).

AIP Advances 11, 065308 (2021); doi: 10.1063/5.0046803 11, 065308-4

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

field

Hc = Heb +
2(3 +

√
2)

3
Kani

Ms
cos 2θa, (27)

which should correspond to the depinning field with the same order
of magnitude.

V. CONCLUSION
We analytically solve the spin orientation along the wire in the

presence of non-uniform exchange bias,8 as shown in Eq. (18). Even
for symmetry exchange bias field, the solution we get is different
from the traditional one, as shown in Eq. (1), which usually appears
in the field of micromagnetics.9

For asymmetry exchange bias field, the spin orientation θ0 and
the center position of the domain wall xc as a function of domain
wall length scales λR and λR are also derived analytically. These vari-
ables can be easily measured in experiments, and hence, it could
be verified in practice. Finally, with a small anisotropic effect, the
domain wall stability condition and the depinning field are also
obtained.

Although the model is so simplified that only the exchange bias,
the exchange energy, and the anisotropy effect are considered, the
other contributions from dipolar interactions and the imperfect and
edge energy, which are at least one order lower,18 are ignored; our
analytic results are still consistent with previous simulation.8 The
creation and fine tuning of the domain wall by exchange bias and
uniaxial anisotropy are shown to be possible. These results should
be helpful for the development of new DW-based magnetic devices
and architectures.
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